
A model for resource-aware load balancing on

heterogeneous clusters

J. Faik, J. E. Flaherty, L. G. Gervasio
Department of Computer Science
Rensselaer Polytechnic Institute

Troy, NY 12180

J. D. Teresco
Department of Computer Science

Williams College
Williamstown, MA 01267

K. D. Devine
Sandia National Laboratories
Albuquerque, NM 87185-1111

January 15, 2005

Keywords: I.3.1.d Parallel processing, C.1.2.e Load balancing and task assignment,

C.0.d Modeling of computer architecture

Abstract

We address the problem of partitioning and dynamic load balancing on clusters

with heterogeneous hardware resources. We propose DRUM, a model that encapsu-

lates hardware resources and their interconnection topology. DRUM provides mon-

itoring facilities for dynamic evaluation of communication, memory, and processing

capabilities. Heterogeneity is quantified by merging the information from the monitors

to produce a scalar number called “power.” This power allows DRUM to be used easily

by existing load-balancing procedures such as those in the Zoltan Toolkit while placing

minimal burden on application programmers. We demonstrate the use of DRUM to

guide load balancing in the adaptive solution of a Laplace equation on a heterogeneous

cluster. We observed a significant reduction in execution time compared to traditional

methods.

1 Introduction

Clusters have gained wide acceptance as a viable alternative to tightly-coupled parallel com-

puters. They provide cost-effective environments for running computationally-intensive par-

allel and distributed applications. An attractive feature of clusters is the ability to expand



their computational power incrementally by incorporating additional nodes. This expansion

often results in heterogeneous environments, as the newly-added nodes often have superior

capabilities. Grid technologies such as MPICH-G2 [8] have enabled computation on even

more heterogeneous and widely-distributed systems. Internet-connected systems include

more heterogeneity and extreme network hierarchy.

Our goal is to improve the efficiency of scientific computations in these heterogeneous

environments, while putting as little burden as possible on application programmers. We

propose the Dynamic Resource Utilization Model (DRUM)1 [5, 23], a persistent and dy-

namic model of the execution environment that captures the structure and dynamics of

heterogeneous clusters in order to increase the effectiveness of load balancing. The model

encapsulates hardware resources, their capabilities and their interconnection topology in a

tree structure, and provides a mechanism for dynamic monitoring and evaluation of their

utilization. Monitors in DRUM run concurrently with the user application to collect mem-

ory, network, and CPU utilization and availability statistics. Since our initial focus is on

guiding a resource-aware dynamic load balancing, information from the monitors is distilled

to a scalar “power” value, readily used by load-balancing algorithms capable of producing

non-uniform partition sizes.

We apply DRUM to applications involving the parallel adaptive solution of partial dif-

ferential equations. These are among the most demanding computational problems, arising

in fields such as fluid dynamics [14], materials science [1], biomechanics [12], and ecology [2].

Adaptive strategies that automatically refine, coarsen, and/or relocate meshes and change

the method to obtain a solution with a prescribed level of accuracy as quickly as possible are

essential tools to solve modern multi-dimensional transient problems [3]. The usual approach

to parallelizing these problems is to distribute a discretization (mesh) of the domain across

cooperating processors, and then compute a solution for a global time step and appraise its

accuracy at each step. If the solution is accepted, the computation proceeds to the next time

step. Otherwise, the mesh is adjusted adaptively, and work is redistributed, to correct for

any load imbalance introduced by the adaptive step. If necessary, the numerical method may

be changed. Thus, dynamic partitioning and load-balancing procedures become necessary

1http://www.cs.williams.edu/drum

2



since the locations where meshes must be refined or simpler methods replaced by more com-

plex ones are not known a priori and are determined as part of the solution process. Sandia

National Laboratories’ Zoltan Toolkit [6] provides a common interface to several state-of-

the-art partitioners and dynamic load balancers Most of these procedures seek to achieve an

even distribution of computational work, while minimizing interprocess communication and

data movement necessary to achieve the new decomposition; [20] includes a survey of such

procedures. Figure 1 shows the interaction between parallel adaptive application software

Load Balancing Suite

Application Software

OK

done

!OK

!done

Partitioning and Dynamic Load Balancing
Implementations/Support Tools

Evaluate
Error

Adaptive
Step

Setup/Initial
Partitioning

Rebalance
Load

Compute

Figure 1: Program flow of a typical parallel adaptive computation using a load balancing

suite such as Zoltan.

and a dynamic load balancing suite such as that in Zoltan. After an initial partitioning, the

application performs computation steps, periodically evaluating error estimates and checking

against specified error tolerances. If the error is within the tolerance, the computation con-

tinues. Otherwise, an adaptive refinement takes place, followed by dynamic load balancing

before the computation resumes. However, these dynamic load balancing procedures do not

directly account for heterogeneity in the execution environment. Results herein use power

values computed by DRUM to guide Zoltan procedures to produce resource-aware partitions.

Figure 2 shows the interaction among an application code, a load balancing suite such as

Zoltan, and a resource monitoring system such as DRUM for a typical adaptive computa-

tion. When load balancing is requested, the load balancer queries the monitoring system’s

performance analysis component to determine appropriate parameters and partition sizes

for the rebalancing step. While our examples will use DRUM with Zoltan, DRUM may also

be used as a stand-alone library.

3



Load Balancing Suite
Partitioning and Dynamic Load Balancing

Application Software

!done

Implementations/Support Tools

!OK

done

OK

System

Resource
Monitoring

Setup/Initial

Analysis
Performance

Capabilities
Static

Monitoring
Dynamic

Error
Evaluate

Compute

Load
Rebalance

Step
Adaptive

Partitioning

Figure 2: A typical interaction between an adaptive application code and a dynamic load

balancing suite, when using a resource monitoring system (e.g., DRUM).

The next section describes some related work. We present the details of DRUM in

Section 3. Section 4 contains results using DRUM to reduce application run time on a

heterogeneous cluster. A discussion of the results and a presentation of plans for future

development and experimentation are the subject of Section 5.

2 Related Work

The popularity of clusters has motivated several recent efforts to study dynamic load balanc-

ing for heterogeneous systems. Minyard and Kallinderis [10] use octree structures to conduct

partitioning in dynamic execution environments. To account for the dynamic nature of the

execution environment, they collect run-time measurements based on the “wait” times of

the processors involved in the computation. These “wait” times measure how long each

CPU remains idle while all other processors finish the same task. The cells are assigned

load factors that are proportional to the “wait” times of their respective owning processes.

Each octant load is subsequently computed as the sum of load factors of the cells contained

within the octant. The octree algorithm then balances the load factors based on the weight

factors of the octants, rather than the number of cells contained within each octant. Wal-

shaw and Cross [24] conduct multilevel mesh partitioning for heterogeneous communication

networks. They modify a multilevel algorithm, seeking to minimize a cost function based on

a model of the heterogeneous communication network. The model, which gives only a static

4



quantification of the network heterogeneity is supplied by the user at run-time as a Network

Cost Matrix (NCM). The NCM implements a complete graph representing processor inter-

connections. Each graph edge is weighted as a function of the length of the path between its

corresponding processors. Lowekamp, et al. [9] present a resource monitoring system called

Remos. Remos allows applications to collect information about network and host condi-

tions across different network architectures. Sinha and Parashar [17] present a framework

for adaptive system-sensitive partitioning and load balancing on heterogeneous and dynamic

clusters. They use the Network Weather Service (NWS) [26] to gather information about

the state and capabilities of available resources; then they compute the load capacity of each

node as a weighted sum of processing, memory, and communications capabilities. Reported

experimental results show that system-sensitive partitioning significantly decreases applica-

tion execution time. Most of these approaches are either related to a specific load-balancing

algorithm or rely on information supplied externally at run-time or through instrumentation

probes added to the user application. Our proposed system addresses some of these issues.

DRUM does not require a specific load-balancing algorithm and relies on both static and

dynamic information to evaluate resource usage.

3 DRUM: Dynamic Resource Utilization Model

We present DRUM, a model that incorporates aggregated information about the capabilities

of the network and computing resources composing an execution environment. DRUM can be

viewed as an abstract object that (i) encapsulates the details of the execution environment,

and (ii) provides a facility for dynamic, modular and minimally-intrusive monitoring of the

execution environment.

Unlike the directed-graph hardware model used in the Rensselaer Partition Model [19],

DRUM uses a tree structure. DRUM also incorporates a framework that addresses hier-

archical clusters (e.g., clusters of clusters, or clusters of multiprocessors) by capturing the

underlying interconnection network topology. The inherent structure of DRUM leads nat-

urally to a topology-driven, yet transparent, execution of Zoltan’s hierarchical partitioning

capabilities, where different load balancing procedures are used at different levels in the net-

5



work hierarchy [22]. The root of the tree represents the total execution environment. The

children of the root node are high level divisions of different networks connected to form

the total execution environment. Sub-environments are recursively divided, according to

the network hierarchy, with the tree leaves being individual single-processor (SP) nodes or

shared-memory multiprocessing (SMP) nodes. Computation nodes at the leaves of the tree

have data representing their relative computing and communication power. Network nodes,

representing routers or switches, have an aggregate power calculated as a function of the

powers of their children and the network characteristics.

We quantify the heterogeneity of the different components of the execution environment

by assessing computational, memory and communication capabilities of each node. The

collected data in each node is combined in a single quantity called the node “power.” For

load-balancing purposes, we interpret a node’s power as the percentage of overall load it

should be assigned based on its capabilities.

SP

SP

SP SP SP

Router

Router Router SMP

Router

Communication node

Processing node

SMPSMPSwitch

SP

SP SP

Figure 3: Tree constructed by DRUM to represent a heterogeneous network.

Figure 3 shows an example of a tree constructed by DRUM to represent a heterogeneous

cluster. Eight SP nodes and three SMP nodes are connected in a hierarchical network

structure consisting of four routers and a network switch.

6



3.1 Model creation

DRUM’s tree model of the execution environment is created upon initialization using an

XML-format configuration file (Figure 4) that contains a list of nodes and description of

their interconnection topology. This configuration file is created manually or with a graph-

ical configuration tool called DrumHead [21]. DrumHead (Figure 5) provides capabilities

including specification of cluster nodes and their characteristics, network topology and capa-

bilities, specification of load balancing procedures and parameters for hierarchical balancing,

initial assessment of node capabilities by running distributed benchmarks, and facilities to

check availability of network management capabilities such as SNMP (Simple Network Man-

agement Protocol) and threading. The configuration tool needs to be re-run only when

hardware characteristics of the system have changed.

<machinemodel><node>

type="NETWORK" nodenum="0" name="" IP="" isMonitorable="false"

parent="-1" imgx="361.0" imgy="52.0"

<lbmethod lbm="HSFC" KEEP_CUTS="1"></lbmethod>

</node><node>

type="SINGLE_COMPUTING" nodenum="2" name="mendoza.cs.williams.edu"

IP="137.165.8.140" isMonitorable="true" parent="0"

imgx="50.0" imgy="138.0"

</node><node>

type="MULTIPLE_COMPUTING" nodenum="3" name="rivera.cs.williams.edu"

IP="137.165.8.130" isMonitorable="false" parent="0"

imgx="74.64 "imgy="263.0" numprocs="4"

<lbmethod lbm="HSFC" KEEP_CUTS="1">

</lbmethod></node>

...

</machinemodel>

Figure 4: An excerpt from the XML configuration file generated by DrumHead for the

Bullpen Cluster at Williams College (see also Figure 6).

3.2 Capabilities Assessment

Resource capabilities are assessed initially using benchmarks. Currently, LINPACK [7] is

used as a benchmark to compute a MFLOPS rating for the computation nodes of the cluster.

7



Figure 5: Screen shot of DrumHead, the graphical Java program used to aid in the creation

of the XML machine topology description. Here, a description of the Bullpen cluster at

Williams College is being edited.

The benchmark may be run from the configuration tool (Figure 5) or at the command line.

The benchmarks may not accurately reflect the characteristics of a particular computation.

We intend to allow user-specified callbacks that could be used to calibrate the machine

model, likely using the same software that will be used for the actual computation.

During the course of a computation, the availability of resources can change dramatically,

particularly in shared environments. In these dynamic environments, DRUM’s capability

assessments can be updated by agents: threads that run concurrently with the application

to monitor each node. An application may choose to use only the static information gathered

from the original benchmarks (e.g., if the system does not support threads), or may also use

dynamic monitoring. The DRUM startMonitoring() function spawns the agent threads.

8



A call to DRUM stopMonitoring() ends the dynamic monitoring. The monitoring agents

contain DRUM nic objects that monitor communication traffic and DRUM cpuMem objects that

monitor CPU load and memory usage. Some computation nodes, called representatives, are

responsible for monitoring one or more network nodes.

A DRUM nic object can be attached to either a computation or a network node. Versions

of DRUM nic objects have been implemented using the net-snmp library2 and kernel statistics

to collect network traffic information at each node.

A DRUM cpuMem object gathers information about the CPU usage and the memory ca-

pacity of a computation node using kernel statistics. The statistics are combined with the

static benchmark data to obtain a dynamic estimate of the processing power.

After monitoring has been stopped, DRUM computePowers() updates the power of the

nodes in the model. These powers, which are appropriate to use as resource-aware partition

sizes in a dynamic load-balancing procedure, are queried with DRUM getLocalPartSize().

3.3 Node power

DRUM distills the information in the model to a power value for each node, a single number

indicating the portion of the total load that should be assigned to that node. This is similar to

the Sinha and Parashar approach [17]. Given power values for each node, any partitioning

procedure capable of producing variable-sized partitions, including all Zoltan procedures,

may be used to achieve an appropriate decomposition. Thus, any applications using a

load-balancing procedure capable of producing non-uniform partitions can take advantage

of DRUM with little modification. Applications that already use Zoltan can make use of

DRUM simply by setting a Zoltan parameter, with no further changes needed.

The power at each node depends on processing power and communication power. We

compute the power of node n as the weighted sum of the processing power pn and commu-

nication power cn:

powern = wcomm
n cn + wcpu

n pn, wcomm
n + wcpu

n = 1.

2http://www.net-snmp.org

9



3.3.1 Processing power

For a computation node n with m CPUs on which kn application processes are running, we

evaluate the processing power pn,j for each process j, j = 1, 2, . . . , kn, on node n based on

(i) CPU utilization un,j by process j, (ii) the fraction it of time that CPU t is idle, and

(iii) the node’s static benchmark rating (in MFLOPS) bn. The overall idle time in node n is
∑m

t=1 it. However, when kn < m, the kn processes can make use of only kn processors at any

time, so the maximum exploitable total idle time is kn −
∑kn

j=1 un,j . Therefore, the total idle

time that the kn processes could exploit is min(kn −

∑kn

j=1 un,j,
∑m

t=1 it). Since the operating

system’s CPU scheduler can be expected to give each of the kn processes the same portion

of the time on a node’s CPUs, we assign all processes on node n equal power. We compute

average CPU usage and idle times per process:

un =
1

kn

kn
∑

j=1

un,j, in =
1

kn

min(kn −

kn
∑

j=1

un,j ,
m

∑

t=1

it) .

Processing power pn,j is estimated as

pn,j = bn(un + in), j = 1, 2, . . . , kn .

Since pn,j is the same for all processes j on node n, pn =
∑kn

j=1 pn,j = knpn,1. On internal

nodes, pn is the sum of the processing powers of the nodes’ children.

3.3.2 Communication power

We estimate a node’s communication power based on the communication the node. At

each computation and (when possible) network node, DRUM’s monitoring agents compute

the rate of incoming packets λ and outgoing packets µ on each relevant communication

interface. Just like in [18], for each interface i, we compute the available bandwidth (ABW )

using measurements over a time interval T as

Ai(t, T ) =
1

T

∫ T+t

t
(Ci − (λi(t) + µi(t)))dt,

where Ai(t, T ) is the available bandwidth at interface i through the time interval from t to

t + T , and Ci is the link’s maximum bandwidth. We view a node’s communication power

10



as proportional to the available bandwidth. For a node n with s interfaces, we estimate the

communication power as

cn =
1

s

s
∑

i=1

Ai(t, T ).

In practice, software loop-back interfaces are ignored. To compute per-process communica-

tion powers for processes j, j = 1, 2, . . . , kn, on node n, we compute cn and associate 1

kn

cn

with each process. For consistency, if at least one non-root network node cannot be probed

for communication traffic, all internal nodes are assigned ABW values computed as the sum

of their immediate children’s values.

4 Computational results

We present experimental results using DRUM to guide resource-aware load balancing in the

adaptive solution of a Laplace equation on the unit square, using Mitchell’s Parallel Hierar-

chical Adaptive MultiLevel software (PHAML) [11]. After 17 adaptive refinement steps, the

mesh has 524,500 nodes. We use a Sun cluster at Williams College consisting of nodes with

“fast” (450MHz Sparc UltraII) and “slow” (300/333MHz Sparc UltraII) processors (Fig-

ure 6). Fast processors are either in four-way or two-way SMP nodes. Slow processors are in

2 CPUs @ 450MHz

512 MB memory

512 MB memory
2 CPUs @ 450MHz

arroyo

rivera

mendoza

128 MB memory
1 CPU @ 300MHz

4 CPUs @ 450MHz

1 CPU @ 300MHz
128 MB memory

nelson

4 GB memory

1 CPU @ 300MHz
128 MB memory

lloyd

wetteland

1 CPU @ 333MHz
128 MB memory

stanton

4 CPUs @ 450MHz

1 GB memory
1 CPU @ 450MHz

bullpen

4 GB memory

N
et

w
o

rk
 (

10
0M

b
it

 E
th

er
n

et
)

1 GB memory

righetti
2 CPUs @ 450MHz
512 MB memory

mcdaniel
2 CPUs @ 450MHz

gossage

512 MB memory
2 CPUs @ 450MHz

lyle

2 CPUs @ 450MHz

1 GB memory

farr

Figure 6: The “Bullpen Cluster” at Williams College.

uniprocessor nodes. All nodes are connected by fast (100 Mbit) Ethernet. Benchmark runs

11



Figure 7: SFC partitioning example. Dots (objects) are ordered along the SFC. Partitions

are indicated by shading.

indicated that the fast processors have a computation rate of approximately 1.5 times faster

than the slow processors. Given an equal distribution of work, the fast processors would be

idle one third of the time.

We use the Zoltan’s Hilbert Space Filling Curve (HSFC) procedure for partitioning,

though we re-emphasize that the powers computed by DRUM may be used by any Zoltan

procedure and results are similar for other methods. A space-filling curve (SFC) maps n-

dimensional space to one dimension [16]. In SFC partitioning [13, 25], an object’s coordinates

are converted to a SFC key representing the object’s position along a SFC through the

physical domain. Sorting the keys gives a linear ordering of the objects (Figure 7). This

ordering is cut into appropriately weighted pieces that are assigned to processors. Zoltan

method HSFC [6] replaces the sort with adaptive binning. Based upon their Hilbert SFC

keys, objects are assigned to bins associated with partitions. Bin sizes are adjusted adaptively

to obtain sufficient granularity for balancing.

4.1 Experiment 1: Heterogeneous cluster with one process per

node

The first set of experiments, which appear, in part, in [23], uses combinations of fast and

slow processors with one application process being run on each node. Figure 8 shows the run

time of the PHAML application on various combinations of fast and slow processors and for

12



communication weights (wcomm values) of 0, 0.1 and 0.25. Runs on only the homogeneous

(fast) nodes show very low overhead incurred by the use of DRUM. On heterogeneous config-

urations, experiments using DRUM’s resource-aware partitions show a clear improvement in

execution time compared to those with uniformly sized partitions. In Figure 9, we compare

Figure 8: Execution times for PHAML runs when DRUM is used on different combinations

of fast and slow processors, with uniform partition sizes and resource-aware partition sizes

(with various values for wcomm). Here, only one application process is run on each node.

the execution time Relative Change (RC) achieved to an “Ideal” Relative Change (RCideal)

for the same experimental data. RC is the variation in execution time relative to the original

execution time:

RC =
tuniform − tDRUM

tuniform

where tuniform is the execution time of the application without using DRUM and tDRUM is

the execution time when DRUM is used. For this example, RCideal is the relative change

that would be achieved if the fast processors were assigned exactly 50% more load than the

slow ones and if communication overhead were ignored. In general,

RCideal = 1 −

n
∑n

i=0 hi

where n is the total number of nodes running the application processes, and hi is the ratio

of ith processor’s speed to that of the slowest processor. In our case, since the fast nodes

13



are assumed to be 1.5 times faster than the slow ones, the hi for each of the fast nodes is

equal to 1.5. The assumption of no communication overhead is not realistic in most adaptive

applications and, therefore, RCideal cannot practically be reached.

Figure 9: Relative change in CPU times for PHAML runs when DRUM is used on different

combinations of fast and slow processors, contrasted with the ideal relative change. Only

one application process is running on each node.

4.2 Experiment 2: Communication Weight Study

In order to study the effect of the communication weight wcomm in the overall execution

time, we repeated the experiment for a wider range of communication weights and proces-

sor/process combinations. Here, multiple application processes are running on the SMP

nodes. On both the slow and fast nodes, only one (application) process is running per pro-

cessor. The results are reported in Figure 10. The combination of processes, processors and

nodes are indicated as:

#total processes [#fast nodes(#processes per node) + #slow nodes(1)]

In particular, these results confirm the low overhead of DRUM monitors in the cases of 8

and 16 processor runs, where only fast nodes are used. They also show significant benefits in

the case of heterogeneous processor/process combinations. These computations also suggest

14



that a communication weight of more than 0.5 is not appropriate for our test application.

This is expected, since this application overlaps computation and communication. Figure 11

shows the best relative change values for each combination of processors and contrasts them

with the ideal relative change.

Figure 10: Execution times for PHAML runs when DRUM is used on different combinations

of fast and slow processors and with different values for wcomm
n .

4.3 Experiment 3: Correlation with Degree of Heterogeneity

The potential improvement from resource-aware load balancing depends to a large extent

on the degree of heterogeneity in the system. If the execution environment is nearly homo-

geneous, very little can be gained by accounting for heterogeneity. In such a situation, the

overhead introduced by the dynamic monitoring may even slow the computation slightly.

Hence, any measure of improvement should be tied to the degree of heterogeneity of the

system.

Xiao, et al. , propose metrics for CPU and memory heterogeneity defined as the standard

deviation of computing powers and memory capacities among the computation nodes [27].

In particular, they define system CPU heterogeneity for a system with P processors as

Hcpu =

√

∑P
j=1(W cpu − Wcpu(j))2

P

15



Figure 11: Ideal and best observed relative changes across all values of wcomm
n for the timings

shown in Figure 10.

where Wcpu(j) is a measure of the CPU speed relative to the fastest CPU in the system,

computed as

Wcpu(j) =
Vcpu(j)

maxP
i=1Vcpu(i)

and W cpu is the average of relative CPU speeds:

W cpu =

∑P
j=1 Wcpu(j)

P
.

Vcpu(i) is the MIPS (millions of instructions per second) rating for CPU i. We use the same

formulas to measure CPU heterogeneity, substituting the MFLOPS numbers obtained from

the benchmark for the MIPS values. MFLOPS provides a more reliable measure of CPU

performance than raw MIPS.

Figure 12 shows the evolution of RC as a function of the degree of heterogeneity. As

expected, DRUM has a greater impact on the execution time when the heterogeneity of the

execution environment is greater.

4.4 Experiment 4: Non-Dedicated usage of the cluster

The most significant benefits of DRUM come from the fact thatr it accounts for both static

information through the benchmark data and dynamic performance using monitoring agents.

16



-5

0

5

10

15

20

0 2 4 6 8 10 12 14 16 18 20

R
el

at
iv

e 
C

h
an

g
e

Degree of Heterogeneity

Figure 12: Relative Change in execution time as a function of the degree of heterogeneity.

This provides a benefit both on dedicated systems with some heterogeneity that can be cap-

tured by the benchmarks, and highly dynamic systems where the execution environment

may be shared with other processes. We have tested our procedures in these environments;

preliminary results first appeared in [23]. In that case, we ran the same PHAML example but

with two additional compute-bound processes (which are not part of the PHAML computa-

tion and are not explicitly being monitored by DRUM) running on the highest-rank node in

the computation. When using uniform partitions (with DRUM disabled) the computations

are slowed significantly by the fact that some processors are overloaded. In particular in

cases where the “slow nodes” are used, this results in a significant imbalance and most pro-

cessors spend time waiting for the overloaded node to complete its part of the computation.

When DRUM is used, we see significant improvement in running times, even in cases where

the processors are all the same and the only source of heterogeneity is the external load that

can only be detected at run time.

5 Discussion

Our preliminary results show a clear benefit to resource-aware load balancing. We are cur-

rently testing the procedures on a wider variety of heterogeneous systems and for different

applications. Additional examples demonstrating DRUM’s dynamic capabilities are being

devised. The real advantages of the communication power can only be seen when network

resources are non-uniform or part of the network is heavily loaded. We also plan to allow

DRUM to trigger an application’s load balancing phase when its monitors detect an imbal-

17



ance, even in cases where the application has not encountered an adaptive step that would

normally trigger load balancing.

We have implemented hierarchical balancing procedures that interact with DRUM to

tailor partitions to a given network topology [22]. In addition to the ability to produce

weighted partitions, this strategy allows different load-balancing algorithms to be used, as

appropriate, in different parts of the network hierarchy [19, 22]. Future plans include a

tighter integration of DRUM with hierarchical balancing to allow partitions that can take

advantage of hierarchical partitions to account for network hierarchy and DRUM-guided

partition sizes to account for heterogeneity and non-dedicated network and processor usage.

We are currently integrating tools for data noise filtering and forecasting. This would

allow DRUM to produce better estimates for resource utilization and would also permit an

implementation of an adaptive probing procedure in the monitors.

DRUM agents monitor the available memory and the total memory on each computation

node. Given this limited information, memory utilization should be a factor in the compu-

tation of a node’s power only when the ratio of available memory to total memory becomes

smaller than a specified threshold. More refined memory statistics (e.g., number of cache

levels, cache hit ratio, cache and main memory access times) are needed to capture memory

effects more accurately in our model.

Currently, DRUM requires a description of the computing environment, which may be

generated by DrumHead, and uses its own monitoring tools to gather benchmarks and run-

time performance statistics. In grid environments and other situations this information may

be available from other tools (e.g., Globus Monitoring and Discovery Service (MDS) [4],

the Network Weather Service (NWS) [26], Ganglia [15]). We plan to interface DRUM with

these tools. We have implemented an interface to NWS [21] and intend to test this interface

further and compare its performance with DRUM’s native monitoring system. While we will

not require NWS or any other external packages to make use of DRUM, we would like to be

able to make use of information that these packages can provide when they are available.

18



Acknowledgments

Faik, Flaherty, Gervasio, and Teresco were supported in part by Contract 15162 with San-

dia National Laboratories, a multi-program laboratory operated by Sandia Corporation, a

Lockheed Martin Company, for the United States Department of Energy under Contract DE-

AC04-94AL85000. Computer systems used include the “Bullpen Cluster” of Sun Microsys-

tems servers at Williams College and the IBM Netfinity cluster at Rensselaer Polytechnic

Institute. The authors would like to thank William Mitchell for his help with the PHAML

software used for many of the computational results. Williams College undergraduates Laura

Effinger-Dean and Arjun Sharma worked on DRUM as part of the Williams College Sum-

mer Science Research program. Effinger-Dean implemented the DRUM interface to NWS.

Sharma redesigned and implemented an improved version of DrumHead. Erik Boman and

Bruce Hendrickson at Sandia National Laboratories also contributed to the design of DRUM.

References

[1] S. Adjerid, J. Flaherty, J. Hudson, and M. Shephard. Modeling and the adaptive solution

of CVD fiber-coating processes. Comput. Methods Appl. Mech. Engrg., 172:293–308,

1999.

[2] T. Caraco, S. Glavanakov, G. Chen, J. Flaherty, T. Ohsumi, and B. Szymanski. A

diffusion model for vector-borne infection: Lyme disease. American Naturalist, 160:348–

359, 2002.

[3] K. Clark, J. E. Flaherty, and M. S. Shephard. Appl. Numer. Math., special ed. on

Adaptive Methods for Partial Differential Equations, 14, 1994.

[4] K. Czajkowski, S. Fitzgerald, I. Foster, and C. Kesselman. Grid information services

for distributed resource sharing. In Tenth IEEE International Symposium on High-

Performance Distributed Computing (HPDC-10), 2001.

[5] K. D. Devine, E. G. Boman, R. T. Heaphy, B. A. Hendrickson, J. D. Teresco, J. Faik,

J. E. Flaherty, and L. G. Gervasio. New challenges in dynamic load balancing. Technical

19



Report Technical Report CS-04-02, Williams College Department of Computer Science,

2004. To appear, Appl. Numer. Math.

[6] K. D. Devine, B. A. Hendrickson, E. Boman, M. St. John, and C. Vaughan. Zoltan:

A Dynamic Load Balancing Library for Parallel Applications; User’s Guide. Sandia

National Laboratories, Albuquerque, NM, 1999. Tech. Report SAND99-1377. Open-

source software distributed at http://www.cs.sandia.gov/Zoltan.

[7] J. J. Dongarra, C. B. Moler, J. R. Bunch, and G. W. Stewart. LINPACK User’s Guide.

SIAM, Philadelphia, 1979.

[8] N. T. Karonis, B. Toonen, and I. Foster. MPICH-G2: A grid-enabled implementation of

the Message Passing Interface. J. Parallel Distrib. Comput., 63(5):551–563, May 2003.

[9] B. Lowekamp, N. Miller, D. Sutherland, T. Gross, P. Steenkiste, and J. Subhlok. A

resource query interface for network-aware applications. In Proc. 7th IEEE Symp. on

High-Performance Distributed Computing, 1998.

[10] T. Minyard and Y. Kallinderis. Parallel load balancing for dynamic execution environ-

ments. Comput. Methods Appl. Mech. Engrg., 189(4):1295–1309, 2000.

[11] W. F. Mitchell. The design of a parallel adaptive multi-level code in Fortran 90. In

International Conference on Computational Science (3), volume 2331 of Lecture Notes

in Computer Science, pages 672–680. Springer, 2002.

[12] T. Ohsumi, J. Flaherty, V. Barocas, S. Adjerid, and M. Aiffa. Adaptive finite element

analysis of the anisotropic biphasic theory of tissue-equivalent mechanics. Computer

Methods in Biomechanics and Biomechanical Engineering, 3:215 – 229, 2000.

[13] J. R. Pilkington and S. B. Baden. Dynamic partitioning of non-uniform structured

workloads with spacefilling curves. IEEE Trans. on Parallel and Distributed Systems,

7(3):288–300, 1996.

[14] J.-F. Remacle, J. Flaherty, and M. Shephard. An adaptive discontinuous Galerkin

technique with an orthogonal basis applied to compressible flow problems. SIAM Review,

45(1):53–72, 2003.

20



[15] F. D. Sacerdoti, M. J. Katz, M. L. Massie, and D. E. Culler. Wide area cluster moni-

toring with Ganglia. In Proc. IEEE Cluster 2003, Hong Kong, 2003.

[16] H. Sagan. Space-Filling Curves. Springer-Verlag, 1994.

[17] S. Sinha and M. Parashar. Adaptive system partitioning of AMR applications on het-

erogeneous clusters. Cluster Computing, 5(4):343–352, October 2002.

[18] J. Strauss, D. Batabi, and F. Kaashoek. A measurement study of available bandwidth

estimation tools. In Proc. 3rd ACM SIGCOMM conference on Internet measurement,

pages 39–44. ACM Press, 2003.

[19] J. D. Teresco, M. W. Beall, J. E. Flaherty, and M. S. Shephard. A hierarchical partition

model for adaptive finite element computation. Comput. Methods Appl. Mech. Engrg.,

184:269–285, 2000.

[20] J. D. Teresco, K. D. Devine, and J. E. Flaherty. Numerical Solution of Partial Differ-

ential Equations on Parallel Computers, chapter Partitioning and Dynamic Load Bal-

ancing for the Numerical Solution of Partial Differential Equations. Springer-Verlag,

2005.

[21] J. D. Teresco, L. Effinger-Dean, and A. Sharma. Resource-aware parallel adaptive

computation for clusters. Technical Report CS-04-13, Williams College Department

of Computer Science, 2005. Submitted to ICCS ’05, Workshop on High Performance

Computing in Academia: Systems and Applications.

[22] J. D. Teresco, J. Faik, and J. E. Flaherty. Hierarchical partitioning and dynamic load

balancing for scientific computation. Technical Report CS-04-04, Williams College De-

partment of Computer Science, 2004. Submitted to Proc. PARA ’04.

[23] J. D. Teresco, J. Faik, and J. E. Flaherty. Resource-aware scientific computation on

a heterogeneous cluster. Technical Report CS-04-10, Williams College Department of

Computer Science, 2005. To appear, Computing in Science & Engineering.

21



[24] C. Walshaw and M. Cross. Multilevel Mesh Partitioning for Heterogeneous Commu-

nication Networks. Future Generation Comput. Syst., 17(5):601–623, 2001. (originally

published as Univ. Greenwich Tech. Rep. 00/IM/57).

[25] M. S. Warren and J. K. Salmon. A parallel hashed oct-tree n-body algorithm. In Proc.

Supercomputing ’93, pages 12–21. IEEE Computer Society, 1993.

[26] R. Wolski, N. T. Spring, and J. Hayes. The Network Weather Service: A distributed re-

source performance forecasting service for metacomputing. Future Generation Comput.

Syst., 15(5-6):757–768, October 1999.

[27] L. Xiao, Z. Zhang, and Y. Qu. Effective load sharing on heterogeneous networks of

workstations. In Proc. IPDPS’2000, Cancun, 2000.

22


