
Hierarchical Partitioning and Dynamic Load

Balancing for Scientific Computation

James D. Teresco1, Jamal Faik2, and Joseph E. Flaherty2

1 Department of Computer Science, Williams College
Williamstown, MA 01267 USA

terescoj@cs.williams.edu
2 Department of Computer Science, Rensselaer Polytechnic Institute

Troy, NY 12180, USA
{faikj,flaherje}@cs.rpi.edu

Abstract. Cluster and grid computing has made hierarchical and het-
erogeneous computing systems increasingly common as target environ-
ments for large-scale scientific computation. A cluster may consist of a
network of multiprocessors. A grid computation may involve commu-
nication across slow interfaces. Modern supercomputers are often large
clusters with hierarchical network structures. For maximum efficiency,
software must adapt to the computing environment. We focus on par-
titioning and dynamic load balancing, in particular on hierarchical pro-
cedures implemented within the Zoltan Toolkit, guided by DRUM, the
Dynamic Resource Utilization Model. Here, different balancing proce-
dures are used in different parts of the domain. Preliminary results show
that hierarchical partitionings are competitive with the best traditional
methods on a small hierarchical cluster.

Modern three-dimensional scientific computations must execute in parallel to
achieve acceptable performance. Target parallel environments range from clus-
ters of workstations to the largest tightly-coupled supercomputers. Hierarchical
and heterogeneous systems are increasingly common as symmetric multipro-
cessing (SMP) nodes are combined to form the relatively small clusters found in
many institutions as well as many of today’s most powerful supercomputers. Net-
work hierarchies arise as grid technologies make Internet execution more likely
and modern supercomputers are built using hierarchical interconnection net-
works. MPI implementations may exhibit very different performance character-
istics depending on the underlying network and message passing implementation
(e.g., [32]). Software efficiency may be improved using optimizations based on
system characteristics and domain knowledge. Some have accounted for clusters
of SMPs by using a hybrid programming model, with message passing for inter-
node communication and multithreading for intra-node communication (e.g., [1,
27]), with varying degress of success, but always with an increased burden on
programmers to program both levels of parallelization.

Our focus has been on resource-aware partitioning and dynamic load bal-
ancing, achieved by adjusting target partition sizes or the choice of a dynamic
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load-balancing procedure or its parameters, or by using a combination of load-
balancing procedures. We retain the flat message passing programming model.
For hierarchical and heterogeneous systems, different choices of load balancing
procedures may be appropriate in different parts of the parallel environment.
There are tradeoffs in execution time and partition quality (e.g., surface indices,
interprocess connectivity, strictness of load balance) [35] and some may be more
important than others in some circumstances. For example, consider a cluster
of SMP nodes connected by Ethernet. A more costly graph partitioning can be
done to partition among the nodes, to minimize communication across the slow
network interface, possibly at the expense of some computational imbalance.
Then, a fast geometric algorithm can be used to partition independently within
each node.

1 Partitioning and Dynamic Load Balancing

An effective partitioning or dynamic load balancing procedure maximizes ef-
ficiency by minimizing processor idle time and interprocessor communication.
While some applications can use a static partitioning throughout a computa-
tion, others, such as adaptive finite element methods, have dynamic workloads
that necessitate dynamic load balancing during the computation. Partitioning
and dynamic load balancing can be performed using recursive bisection meth-
ods [2, 29, 31, 38], space-filling curve (SFC) partitioning [7, 23–25, 37] and graph
partitioning (including spectral [26, 29], multilevel [6, 18, 20, 36], and diffusive
methods [8, 19, 22]). Each algorithm has characteristics and requirements that
make it appropriate for certain applications; see [4, 35] for examples and [33] for
an overview of available methods.
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Fig. 1. Interaction between Zoltan and applications.
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The Zoltan Parallel Data Services Toolkit [9, 11] provides dynamic load bal-
ancing and related capabilities to a wide range of dynamic, unstructured and/or
adaptive applications. Using Zoltan, application developers can switch parti-
tioners simply by changing a run-time parameter, facilitating comparisons of
the partitioners’ effect on the applications. Zoltan has a simple interface, and its
design is “data-structure neutral.” That is, Zoltan does not require applications
to construct or use specific data structures. It operates on generic “objects” that
are specified by calls to application-provided callback functions. These callbacks
are simple functions that return to Zoltan information such as the lists of objects
to be partitioned, coordinates of objects, and topological connectivity of objects.
Figure 1 illustrates the interaction between Zoltan and an application.

We focus here on the hierarchical balancing procedures we have implemented
within Zoltan, where different procedures are used in different parts of the com-
puting environment.

2 Hierarchical Balancing
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Fig. 2. Examples of parallel computing environments with 16 processors: (a) a 16-way
SMP workstation; (b) a 16-node computer with all uniprocessor nodes, connected by a
network; (c) two 8-way SMP workstations connected by a network; and (d) four 4-way
SMP workstations connected by a network.

Consider four different 16-way partitionings of a 1,103,018-element mesh used
in a simulation of blood flow in a human aorta [30]. Here, the geometric method
recursive inertial bisection (RIB) [28] and/or the multilevel graph partitioner in
ParMetis [20] are used for partitioning. Only two partition quality factors are
considered: computational balance, and two surface index measures, although
other factors [5] should be considered. The global surface index (GSI) measures
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the overall percentage of mesh faces inter-partition boundaries, and the max-

imum local surface index (MLSI) measures the maximum percentage of any
one partition’s faces that are on a partition boundary. The surface indices are
essentially normalized edge cuts when considering mesh connectivity in terms
of a graph. Partitioning using RIB achieves an excellent computational balance,
with partitions differing by no more than one element, and medium-quality sur-
face indices with MLSI = 1.77 and GSI = 0.61. This would be useful when
the primary concern is a good computational balance, as in a shared-memory
environment (Figure 2b). Using only ParMetis achieves excellent surface index
values, MLSI = 0.40 and GSI = 0.20, but at the expense of a large compu-
tational imbalance, where partition sizes range from 49,389 to 89,302 regions.
For a computation running on a network of workstations (NOW) (Figure 2b),
it may be worth accepting the significant load imbalance to achieve the smaller
communication volume.

For hierarchical systems, a hybrid partitioning may be desirable. Consider the
two SMP configurations connected by a slow network as shown in Figure 2c,d.
In the two 8-way node configuration (Figure 2c), ParMetis is used to divide
the computation between the two SMP nodes, resulting in partitions of 532,063
and 570,955 regions, with MLSI = 0.06 and GSI = 0.03. Within each SMP, the
mesh is partitioned eight ways using RIB, producing partitions within each SMP
balanced to within one element, and with overall MLSI = 1.88 and GSI = 0.56.
Since communication across the slow network is minimized, this is an appropriate
partitioning for this environment. A similar strategy for the four 4-way SMP
configuration (Figure 2d) results in a ParMetis partitioning across the four SMP
nodes with 265,897, 272,976, 291,207 and 272,938 elements and MLSI = 0.23
and GSI = 0.07. Within each SMP, partitions are again balanced to within
one element, with overall MLSI = 1.32 and GSI = 0.32. We first presented an
example of this type of hybrid partition in [32], although the partitions presented
therein were not generated by a fully automatic procedure.

Zoltan’s hierarchical balancing automates the creation of such partitions. It
can be used directly by an application or be guided by the tree representation
of the computational environment created and maintained by the Dynamic Re-
source Utilization Model (DRUM) [10, 13, 34]. DRUM is a software system that
supports automatic resource-aware partitioning and dynamic load balancing for
heterogeneous, non-dedicated, and hierarchical computing environments. DRUM
dynamically models the computing environment using a tree structure that en-
capsulates the capabilities and performance of communication and processing
resources. The tree is populated with performance data obtained from a priori

benchmarks and dynamic monitoring agents that run concurrently with the ap-
plication. It is then used to guide partition-weighted and hierarchical partitioning
and dynamic load balancing. Partition-weighted balancing is discussed further
in [13]. DRUM’s graphical configuration program (Figure 3) may be used to
facilitate the specification of hierarchical balancing parameters at each network
and multiprocessing node.
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Fig. 3. DRUM’s graphical configuration program being used to edit a description of
the “Bullpen Cluster” at Williams College. This program may be used to specify hier-
archical balancing parameters for Zoltan.

The hierarchical balancing implementation utilizes a lightweight “interme-
diate hierarchical balancing structure” (IHBS) and a set of callback functions.
This permits an automated and efficient hierarchical balancing which can use
any of the procedures available within Zoltan without modification and in any
combination. Hierarchical balancing is invoked by an application in the same
way as other Zoltan procedures. A hierarchical balancing step begins by build-
ing an IHBS using these callbacks. The IHBS is an augmented version of the
distributed graph structure that Zoltan builds to make use of the ParMetis [21]
and Jostle [36] libraries. The hierarchical balancing procedure then provides its
own callback functions to allow existing Zoltan procedures to be used to query
and update the IHBS at each level of a hierarchical balancing. After all levels of
the hierarchical balancing have been completed, Zoltan’s usual migration arrays
are constructed and returned to the application. Thus, only lightweight objects
are migrated internally between levels, not the (larger and more costly) appli-
cation data. Figure 4 shows the interaction between Zoltan and an application
when hierarchical balancing is used.



6 J .D. Teresco, J. Faik, and J. E. Flaherty

split MPI_Comm

Zoltan_Create()
Zoltan_Set_Param()
Zoltan_LB_Partition()

Zoltan balancer

Zoltan

call HIER callbacks
partition
return mig. arrays

Create Zoltan object

Application Zoltan

Zoltan_Create()

Zoltan_Set_Param()

Zoltan_LB_Partition()

Zoltan HIER balancer

Set parameters

Invoke balancing

callbacks invoked by Zoltan

continue computation
migrate application data

callbacks on IHBS

set parameters
create Zoltan objects

call application callbacks

at
 e

ac
h 

le
ve

l

invoke balancing

(build initial IHBS)

return migration arrays

update IHBS

Fig. 4. Interaction between Zoltan and applications when hierarchical balancing is
used.

3 Examples

We have tested our procedures using a software package called LOCO [16], which
implements a parallel adaptive discontinuous Galerkin [3] solution of the com-
pressible Euler equations. We consider the “perforated shock tube” problem,
which models the three-dimensional unsteady compressible flow in a cylinder
containing a cylindrical vent [14]. This problem was motivated by flow studies
in perforated muzzle brakes for large calibre guns [12]. The initial mesh contains
69,572 tetrahedral elements. For these experiments, we stop the computation
after 4 adaptive steps, when the mesh contains 254,510 elements.

CPU0 CPU2CPU1 CPU3CPU0

Network

CPU2CPU1 CPU3

Node 0 Node 3

Each SMP independently
computes 4−way RIB partitioning

MemoryMemory

8 processes compute one
2−way ParMetis partitioning

Fig. 5. Hierarchical balancing algorithm selection for two 4-way SMP nodes connected
by a network.

Preliminary results are show that hierarchical partitioning can be compet-
itive with the best results from a graph partitioner alone. We use two eight-
processor computing environments: one with four Sun Enterprise 220R servers,
each with two 450MHz Sparc UltraII processors, the other with two Sun Enter-
prise 420R servers, each with four 450MHz Sparc UltraII processors. The nodes



Hierarchical Partitioning and Dynamic Load Balancing 7

are dedicated to computation and do not perform file service. In both cases,
inter-node communication is across fast (100 Mbit) Ethernet. A comparison of
running times for the perforated shock tube in these computing environments
for all combinations of traditional and hierarchical procedures shows that while
ParMetis multilevel graph partitioning alone often achieves the fastest compu-
tation times, there is some benefit to using hierarchical load balancing where
ParMetis is used for inter-node partitioning and inertial recursive bisection is
used within each node. For example, in the four-node environment (Figure 5),
the computation time following the fourth adaptive step is 571.7 seconds for the
hierarchical procedure with ParMetis and RIB, compared with 574.9 seconds for
ParMetis alone, 702.7 seconds for Hilbert SFC partitioning alone, 1508.2 seconds
for recursive coordinate bisection alone, and 822.9 seconds for RIB alone. It is
higher for other hierarchical combinations of methods.

4 Discussion

We have demonstrated the ability to use the hierarchical balancing implemented
within Zoltan as both an initial partitioning and a dynamic load balancing pro-
cedure for a realistic adaptive computation. While a traditional multilevel graph
partitioning is often the most effective for this application and this computing en-
vironment, the results to date demonstrate the potential benefits of hierarchical
procedures. In cases where the top-level multilevel graph partitioner achieves a
decomposition without introducing load imbalance, it provides the fastest time-
to-solution in our studies to this point (though only slightly faster than the
multilevel graph partitioner alone is used). When imbalance is introduced by
the multilevel graph partitioners, using hierarchical balancing to achieve strict
balance within an SMP is beneficial.

Studies are underway that utilize hierarchical balancing on larger clusters, on
other architectures, and with a wider variety of applications. We expect that hier-
archical balancing will be most beneficial when the extreme hierarchies found in
grid environments are considered. Significant benefits will depend on an MPI im-
plementation that can provide a very efficient intra-node communication. This is
not the case in the MPICH [17] implementation used on the cluster in our exper-
iments. Here, all communication needs to go through a network layer (MPICH’s
p4 device), even if two processes are executing on the same SMP node. We are
eager to run experiments of clusters built from other types of SMP nodes and
on computational grids, and specifically those with MPI implementations that
do provide appropriate intra-node communication optimizations.

Enhancements to the hierarchical balancing procedures will focus on usability
and efficiency. Further enhancements to DRUM’s machine model and graphical
configuration tool will facilitate and automate the selection of hierarchical pro-
cedures. Efficiency may be improved by avoiding unnecessary updates to the
intermediate structure, particularly at the lowest level partitioning step. Main-
taining the intermediate structure across subsequent rebalancing steps would
reduce startup costs, but is complex for adaptive problems. It would also be
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beneficial to avoid building redundant structures, such as when ParMetis is used
at the highest level of a hierarchical balancing, however this would require some
modification of individual Zoltan methods, which we have been careful to avoid
thus far.

The IHBS itself has potential benefits outside of hierarchical balancing. It
could be used to allow incremental enhancements and post-processing “smooth-
ing” [15] on a decomposition before Zoltan returns its migration arrays to the
application. The IHBS could also be used to compute multiple “candidate” de-
compositions with various algorithms and parameters, allowing Zoltan or the
application to compute statistics about each and only accept and use the one
deemed best.

Partitioning is only one factor that may be considered for an effective re-
source-aware computation. Ordering of computation and of communication, data
replication to avoid communication across slow interfaces, and use of multi-
threading are other resource-aware enhancements that may be used. DRUM’s
machine model currently includes some information that may be useful for these
other types of optimizations, and it will be augmented to include information to
support others.
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5. C. L. Bottasso, J. E. Flaherty, C. Özturan, M. S. Shephard, B. K. Szymanski, J. D.
Teresco, and L. H. Ziantz. The quality of partitions produced by an iterative load
balancer. In B. K. Szymanski and B. Sinharoy, editors, Proc. Third Workshop on

Languages, Compilers, and Runtime Systems, pages 265–277, Troy, 1996.
6. T. Bui and C. Jones. A heuristic for reducing fill in sparse matrix factorization”. In

Proc. 6th SIAM Conf. Parallel Processing for Scientific Computing, pages 445–452.
SIAM, 1993.

7. P. M. Campbell, K. D. Devine, J. E. Flaherty, L. G. Gervasio, and J. D. Teresco.
Dynamic octree load balancing using space-filling curves. Technical Report CS-03-
01, Williams College Department of Computer Science, 2003.

8. G. Cybenko. Dynamic load balancing for distributed memory multiprocessors. J.

Parallel Distrib. Comput., 7:279–301, 1989.
9. K. Devine, E. Boman, R. Heaphy, B. Hendrickson, and C. Vaughan. Zoltan data

management services for parallel dynamic applications. Computing in Science and

Engineering, 4(2):90–97, 2002.
10. K. D. Devine, E. G. Boman, R. T. Heaphy, B. A. Hendrickson, J. D. Teresco,

J. Faik, J. E. Flaherty, and L. G. Gervasio. New challenges in dynamic load
balancing. Appl. Numer. Math., 52(2–3):133–152, 2005.

11. K. D. Devine, B. A. Hendrickson, E. Boman, M. St. John, and C. Vaughan. Zoltan:

A Dynamic Load Balancing Library for Parallel Applications; User’s Guide. San-
dia National Laboratories, Albuquerque, NM, 1999. Tech. Report SAND99-1377.
Open-source software distributed at http://www.cs.sandia.gov/Zoltan.

12. R. E. Dillon Jr. A parametric study of perforated muzzle brakes. ARDC Tech.
Report ARLCB-TR-84015, Benét Weapons Laboratory, Watervliet, 1984.

13. J. Faik, J. D. Teresco, K. D. Devine, J. E. Flaherty, and L. G. Gervasio. A model
for resource-aware load balancing on heterogeneous clusters. Technical Report CS-
05-01, Williams College Department of Computer Science, 2005. Submitted to
Transactions on Parallel and Distributed Systems.

14. J. E. Flaherty, R. M. Loy, M. S. Shephard, M. L. Simone, B. K. Szymanski, J. D.
Teresco, and L. H. Ziantz. Distributed octree data structures and local refinement
method for the parallel solution of three-dimensional conservation laws. In M. Bern,
J. Flaherty, and M. Luskin, editors, Grid Generation and Adaptive Algorithms,
volume 113 of The IMA Volumes in Mathematics and its Applications, pages 113–
134, Minneapolis, 1999. Institute for Mathematics and its Applications, Springer.

15. J. E. Flaherty, R. M. Loy, M. S. Shephard, B. K. Szymanski, J. D. Teresco, and
L. H. Ziantz. Adaptive local refinement with octree load-balancing for the paral-
lel solution of three-dimensional conservation laws. J. Parallel Distrib. Comput.,
47:139–152, 1997.

16. J. E. Flaherty, R. M. Loy, M. S. Shephard, and J. D. Teresco. Software for the
parallel adaptive solution of conservation laws by discontinuous Galerkin methods.
In B. Cockburn, G. Karniadakis, and S.-W. Shu, editors, Discontinous Galerkin

Methods Theory, Computation and Applications, volume 11 of Lecture Notes in

Compuational Science and Engineering, pages 113–124, Berlin, 2000. Springer.
17. W. Gropp, E. Lusk, N. Doss, and A. Skjellum. A high-performance, portable im-

plementation of the MPI message passing interface standard. Parallel Computing,
22(6):789–828, Sept. 1996.

18. B. Hendrickson and R. Leland. A multilevel algorithm for partitioning graphs. In
Proc. Supercomputing ’95, 1995.

19. Y. F. Hu and R. J. Blake. An optimal dynamic load balancing algorithm. Preprint
DL-P-95-011, Daresbury Laboratory, Warrington, WA4 4AD, UK, 1995.



10 J .D. Teresco, J. Faik, and J. E. Flaherty

20. G. Karypis and V. Kumar. A fast and high quality multilevel scheme for parti-
tioning irregular graphs. SIAM J. Scien. Comput., 20(1), 1999.

21. G. Karypis and V. Kumar. Parallel multilevel k-way partitioning scheme for irreg-
ular graphs. SIAM Review, 41(2):278–300, 1999.

22. E. Leiss and H. Reddy. Distributed load balancing: design and performance anal-
ysis. W. M. Kuck Research Computation Laboratory, 5:205–270, 1989.

23. W. F. Mitchell. Refinement tree based partitioning for adaptive grids. In Proc.

Seventh SIAM Conf. on Parallel Processing for Scientific Computing, pages 587–
592. SIAM, 1995.

24. A. Patra and J. T. Oden. Problem decomposition for adaptive hp finite element
methods. Comp. Sys. Engng., 6(2):97–109, 1995.

25. J. R. Pilkington and S. B. Baden. Dynamic partitioning of non-uniform struc-
tured workloads with spacefilling curves. IEEE Trans. on Parallel and Distributed

Systems, 7(3):288–300, 1996.
26. A. Pothen, H. Simon, and K.-P. Liou. Partitioning sparse matrices with eigenvec-

tors of graphs. SIAM J. Mat. Anal. Appl., 11(3):430–452, 1990.
27. R. Rabenseifner and G. Wellein. Comparision of parallel programming models

on clusters of SMP nodes. In H. Bock, E. Kostina, H. Phu, and R. Rannacher,
editors, Proc. Intl. Conf. on High Performance Scientific Computing, pages 409–
426, Hanoi, 2004. Springer.

28. M. S. Shephard, J. E. Flaherty, H. L. de Cougny, C. Özturan, C. L. Bottasso, and
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