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ABSTRACT

Undergraduate computer science programs at many small
colleges often include only one course focused on hardware.
Many important concepts are covered in such a course, in-
cluding the basics of computer architecture. By the end of
such a course, students should have a good understanding
of how a binary machine instruction is executed in hard-
ware. Unfortunately, even a simplified diagram of a data-
path is often difficult for students to master. We present
two approaches that use lab exercises to help to address this
problem. In one, students build a working model of the da-
tapath out of ordinary materials; in the other, a software
simulator is designed and implemented. These approaches
are described and their merits discussed.

Categories and Subject Descriptors

K.3.2 [Computer and Information Science Education]:
Computer science education; C.0 [Computer Systems Or-
ganization]: General

Keywords

Computer organization pedagogy, laboratory assignments,
modeling computer architecture, simulating computer archi-
tecture

1. INTRODUCTION
Many small colleges require and/or offer only one course

focused on hardware/computer organization. As such, this
course could be the only place students will be exposed to a
variety of important topics from circuits and binary repre-
sentations to assembly language programming. Ultimately,
we would like students in such a course to understand how
a circuit can be constructed that is capable of executing a
machine language program for a (relatively) simple instruc-
tion set architecture. This means being able to look at a
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complex diagram of the datapath and control of an archi-
tecture implementation and understand how it can possibly
execute machine language programs.

How can we best maximize student understanding of this
fundamental but challenging concept, working within the
constraints of a semester course? We can present diagrams
in class, examine individual components, and show how in-
structions work their way through the architecture. Stu-
dents often grasp the concepts abstractly from this approach.
However, they are not gaining concrete understanding that
would allow them, for example, to be able to complete an
exam question that asks what bits are found on each line
given a particular binary instruction, or to be able to aug-
ment an architecture to implement a new instruction.

Staring at a diagram and/or watching a simulation run
can aid in understanding, but not to the level that “get-
ting your hands dirty” and examining the underlying details
would permit. Constructing a circuit (e.g., as in [10]) on
breadboards, using a logic simulator or even with a hard-
ware definition language, would certainly qualify as getting
your hands dirty, but any of these is likely to be too large
a project for our context. In the era where many of the
instruction set architectures were heavily microcoded, a mi-
crocode design project (e.g., [6]) could serve this purpose
well. However, many architectures studied in classes today
(we use MIPS) do not lend themselves well to a microcoding
approach.

We present two approaches to improving the teaching and
the student understanding of the single-cycle MIPS data-
path, a summary of which is found in Section 2, and de-
scribed in detail in Patterson & Hennessy [8]. In each case,
one or more closed lab sessions are used to provide addi-
tional student hands-on experience compared to lecture-only
classes. In Gousie’s course, developed at Wheaton College,
students are given a project to create a simulation of the
single-cycle MIPS datapath. The simulation must show the
movement of data through the various parts of the hardware
for (ideally) an R-format instruction. The novel idea is that
the simulation consists of a working model made out of any
material except the usual datapath diagram(s). Electronic
simulations are acceptable if they are sufficiently unique;
that is, different from commonly available software.

In Teresco’s course, which has been taught at Mount Hol-
yoke College, Rensselaer Polytechnic Institute, and Siena
College, students develop their own software simulator for
the single-cycle MIPS datapath. Previous class and lab work
in this course focuses on both digital logic and MIPS assem-



bly language programming leading up to a unit on datapath
and control that brings these two extremes together. The
goal is to ensure that students understand how the compo-
nents used in the example datapath can be constructed using
the building blocks and techniques they have used to con-
struct similar components using breadboards and/or a logic
simulator (such as Logisim [3]). They should also be able to
see that while the datapath and control we study only imple-
ments a subset of the MIPS instruction set, they understand
how they would implement remaining instructions. By de-
veloping their own simulator, not just to simulate the effect
of MIPS instructions (as done in tools such as [5, 11]), but
to simulate them by modeling the underlying datapath and
control, they can gain a much deeper insight into how the
datapath and control components work together to achieve
the desired effect for each instruction.

2. THE SINGLE-CYCLE MIPS DATAPATH
Patterson & Hennessy [8] present the single-cycle data-

path (Figure 1) for a subset of 9 MIPS instructions as their
introduction to an implementation scheme for a MIPS pro-
cessor1. This representative set of instructions includes load
(lw) and store (sw), 5 arithmetic and logical instructions
(add, sub, and, or, and slt), and a conditional (beq) and an
unconditional (j) branch. This includes 5 R-format instruc-
tions, which take the form

op rs rt rd shmat funct

6 bits 5 bits 5 bits 5 bits 5 bits 6 bits

3 I-format instructions, which take the form

op rs rt address

6 bits 5 bits 5 bits 16 bits

and one J-format instruction, which takes the form

op address

6 bits 26 bits

Instructions outside the subset require similar implemen-
tation techniques and are omitted for simplicity. Some of
these, such as immediate mode arithmetic operators and bit
shifts, are later considered on homework or exam questions
that ask students to show how they would augment the ar-
chitecture to implement these instructions.

3. TWO WAYS TO AID UNDERSTANDING

OF THE DATAPATH
Of course, there are many approaches to presenting the

datapath. While students have seen and should be able to
understand every component in the diagram in Figure 1 by
the time they encounter it, its complexity is intimidating
if not overwhelming for many students. In our experience,
students have tremendous difficulty understanding the way
data flows from an instruction through the various hardware
devices to finally achieve a (partial) result. We have found
that building up the datapath in parts, as is done in [8] is not
effective, nor is tracing the datapath in lecture. Neverthe-
less, a Google search will show that this is the approach that
is taken by many instructors. Other authors of similar text-
books include datapath simulators, such as [7]. In Gousie’s

1This figure was published in [8] on Page 329, Copyright
Elsevier (2009). Used with permission.

Figure 1: The single-cycle MIPS datapath of [8].

course, the Knob & Switch computer [2] has been used for
many years; students seem to understand the broader work-
ings of the hardware but then still can not show the value of
individual bits on a given line in a comprehensive datapath
diagram. What follows is not meant to supplant current
best practices, but rather to add a hands-on layer to aug-
ment what is currently being taught.

3.1 Computer Organization Model Expo
Gousie’s course includes a lab that attempts to teach the

datapath using a new method called the Comp Org Crazy
Model Expo. The intent of this lab is to have student groups
present a working model showing how data flows through the
CPU for a given R-format instruction.

3.1.1 Model Expo Rules

Students are given an assignment with the following pa-
rameters:

1. Students can form groups of up to three.

2. Given an R-format instruction, the group must build
a model simulating the flow of data through the CPU,
using whatever material that is convenient. Normally,
this means that the model will be made of physical
materials. Crazy ideas are encouraged, as long as the
resulting model adequately shows the datapath.

3. A formal poster must be created that explains the
workings of the model in the context of one of the
diagrams from Patterson & Hennessy.

4. The group must present the model in no more than
ten minutes at the Comp Org Crazy Model Expo. The
event takes place during one of the regularly scheduled
lab sessions.

Before embarking on the project, students must gain ap-
proval of the topic from the instructor; that is, which R-
format instruction they are going to simulate so that multi-
ple groups do not simulate the same instruction. Students
can also amend the rules somewhat through negotiation; for



Figure 2: The Rube Goldberg contraption that sim-
ulates the jump instruction.

example, one group used Alice for the simulation, which ob-
viously is not a physical model, and another group used a
J-format instruction.

The idea behind this project is that students must think
carefully about how the datapath actually works so that
they can translate their understanding to some sort of phys-
ical device that models how the electrons (bits) are moving
through the hardware. By leaving the type of materials
completely open (indeed, crazy is encouraged), and stress-
ing that this should be a fun and not arduous exercise (as
well as promising pizza during the actual lab), most students
seem to take on the challenge with aplomb.

The class during the spring of 2012 had 23 students, di-
vided into 10 groups. Many groups simulated the datapath
in somewhat predictable ways. For example, several groups
used water (similar to [1]) or marbles and tubing to simulate
data flowing through components. One group built a small
cardboard town with roads; the flow of data was simulated
by cars driving through the town. Three of the more suc-
cessful and original models/presentations are described in
the following sections.

3.1.2 Model One: Rube Goldberg Device

In this model, a working machine made of dowels, string,
pulleys, and other assorted parts (see Figure 2), showed how
the MIPS jump instruction (j) works. The user triggers
the Instruction Decode phase by touching the first of a se-
ries of dominoes; these fall until the shift left component
is hit. Marbles represent a subsequent portion of the data-
path; these flow until an arrow representing the instruction
address is moved from its initial position signifying the orig-
inal instruction to its new position. This, then, completes
the instruction. Figure 3 shows the poster that accompanied
the project.

3.1.3 Model Two: R-Format Carnage

Alice [9] was used as a way to quickly build a model of
the datapath. The various hardware parts were modeled as
buildings in a city. A suite of avatars represent the por-
tions of instructions or data moving about the city between
various buildings. In this case, the R-format instructions
were modeled. Running the simulation for the MIPS in-
struction add $t0, $t1, $t2 results in the actions shown

Figure 3: Poster that explains the workings of the
Rube Goldberg contraption.

below. Only the data portions are covered here; see Fig-
ure 4 for information on all parts of the datapath.

1. An airplane is sent to City Hall (instruction memory)
to fetch the instruction.

2. The 32-bit instruction is split into its constituent parts.
Two Eskimos represent the address of the two read
registers ($t1 and $t2), Prince Charming represents
the address of the write register ($t0), a toy soldier
represents the funct code, and a teacher represents the
opcode. Parts that are not used in the instruction (for
example, the shamt code) die off.

3. The two Eskimos ($t1 and $t2) move to the register
file (a townhouse) and transform into a shark and pen-
guin (two data values).

4. The shark and penguin (two data values) move to the
ALU (a farmhouse), where the sum is computed and
stored in a knight.

5. The knight moves to the register file (townhouse) and
its data is written into the write register addressed
by Prince Charming ($t0; see Step 1) completing the
instruction.

Note that the above describes only the movement of data;
the control lines are also modeled, and work similarly. When
the program runs, many avatars, representing the data and
the control signals, are moving simultaneously, giving the
impression that there is chaos. However, the instructions
work themselves out as expected.

Although this implementation may seem somewhat silly,
the students working on the project had fun, as did those
watching the demo. More importantly, the students must
have a good understanding of the underlying mechanism of
the datapath in order to implement the program.

3.1.4 Model Three: Sonification of the Datapath

In this project, the flow of binary instructions through the
datapath is represented as short duration “musical” struc-
tures by means of a simple parameter mapping scheme. The
datapath is divided into segments that roughly correspond
to the stages of a pipeline. Each segment is divided into n



Figure 4: Poster showing the datapath components simulated in Alice.

Figure 5: Mapping the binary string 0100100110 to
a rhythm.

quarter notes, where n is the maximum number of bits in
a binary string passing through that segment. The binary
string is mapped to a rhythm in which a one represents
the beginning of a note and a zero represents a rest if it is
not preceded by any ones in its segment; otherwise, a zero
sustains the last note that was played. Figure 5 shows an
example of rhythmic mapping.

With a rhythm established, a pitch must be mapped from
the data lines. The pitch value of a note is a function of the
data line its corresponding binary string is passing through.
The individual bits within a binary string together form a
chord for that segment.

The program is given a MIPS instruction which is then
decoded into its constituent binary strings. These strings
are mapped to rhythm and pitch, and the corresponding
chords are played. If a pipeline is being simulated, multiple
chords will be played for each segment. Thus, choosing the
notes for each data line was done so as to produce a pleasing
combination of chords when played simultaneously.

3.1.5 Results

Every group presented an acceptable model of a datapath
(or approved component). As shown in the previous sec-
tion, several of the projects were quite novel and showed
particular ingenuity. Each group prepared a poster of vary-
ing quality; this warrants better specifications the next time
the project is assigned. Anecdotally, on the final exam that
included a major question regarding the datapath, the scores
were better than similar final exams (same instructor) in the
previous two iterations of the course. Specifically, the mean
was 75 with a median of 73 this year, compared to 67/67
and 69/70 in the previous iterations. Furthermore, the av-
erage score was a very good 12.3/14 (88%) on the datapath
question that typically is problematic for many students.
Perhaps of more significance was that the students really
took to the project and were interested in not only their
own models but their classmates’ as well.

3.2 Software Simulation of the Datapath
The implementation of a software simulation of the MIPS

datapath and control in Figure 1 serves as a final lab exercise
and project for Teresco’s course. It is one thing to use an
existing simulator, but quite another to have to understand
it to the level of detail required to write your own simulator.

3.2.1 Software Simulation Assignment

The single-cycle simulator the students are required to
implement consists of a number of components.

• A command-line parameter specifies a memory file,



0x8c010024 ! 0: lw %1 36(%0) a

0x8c020028 ! 4: lw %2 40(%0) b

0x8c03002c ! 8: lw %3 44(%0) 1

0x00002020 ! 12: add %4 %0 %0 prod = 0

0x00822020 ! 16: add %4 %4 %2 prod += b

0x00230822 ! 20: sub %1 %1 %3 a--

0x10200001 ! 24: beq 1 %1 %0

0x08000004 ! 28: j 16

0xffffffff ! 32: halt

0x00000003 ! 36: a

0x00000004 ! 40: b

0x00000001 ! 44: 1

Figure 6: A sample memory file specifying a pro-
gram to perform multiplication by repeated addi-
tion. Only the hexadecimal numbers are relevant –
the remainder of each line is treated as a comment
by the simulator.

which is simply a list of 32-bit hexadecimal values that
are placed into the simulation’s memory component.
These values may be treated as instructions or as data.

For example, the memory file in Figure 6 loads a pro-
gram that multiplies two numbers a (3, from memory
location 36), and b (4, from 40), using repeated addi-
tion, accumulating the result in register %4.

• A simple command line interface is used to control the
simulation. This includes commands to execute one or
more instructions from memory, print the contents of
the registers or a range of memory locations, print the
control line values for the current instruction, turn on a
debug mode, and quit the simulation. The command-
line parser is usually provided in starter code to keep
the project more manageable.

• The simulator needs to be able to break down a MIPS
instruction into the fields that will be used to drive
the simulation of the instruction. In a previous lab as-
signment, students were required to read in a sequence
of MIPS machine instructions, print out the opcode,
instruction format, and value of each relevant field for
that instruction format.

• The values of each control line in the datapath are com-
puted by a function which shares that control line’s
name, e.g., the MemRead control line’s value is ob-
tained as needed (by the data memory unit) by calling
the MemRead() function in the control unit module.
The only permitted use of the opcode field of the in-
struction is to pass it as a parameter to the control
unit module.

The heart of the simulator is the simulation of a single
instruction. The simulator models physical components as
high-level language constructs. Memory and register com-
ponents become variables or arrays, multiplexers become
conditional statements, and data and control lines become
variables.

Each component is then simulated, using only the infor-
mation that would be available to that component in the
circuit, to produce its output or change its state. For exam-
ple, the instruction memory uses the value presented to it

from the program counter, and produces the 32-bit instruc-
tion at that location on its output (which becomes a variable,
usually named ir for the instruction register). Meanwhile,
the program counter value is also passed to the adder that
is always adding 4 to its input, producing the address of the
next instruction that will eventually make its way back into
the program counter should that value not be replaced by
a branch target later in the instruction simulation. Concur-
rency is not simulated directly, but part of the exercise is to
think carefully about what order things happen in the data-
path as an instruction is executed. Students also are forced
to realize that these two components are combinational, and
will continue to produce their current output values so long
as the program counter’s value does not change. And they
know that will not happen until the final phase of the in-
struction. This also forces students to realize that the circuit
is always computing useless information concurrently with
useful information. For example, an arithmetic instruction
will never make use of the branch target or jump target ALU
results, but those values are computed nonetheless.

The next step is the essential one to implementing a sim-
ulation that is true to the datapath. Parts of the instruction
(the bit fields determined by the instruction formats) are de-
livered to several components directly. The opcode is sent
only to the control unit, from which all of the control line
values can be computed. This simulator does print out the
name of the instruction based on the opcode, but this is
not used to drive the simulation in any way other than to
compute control line values in the control unit. That is,
nowhere in the simulation outside of the control unit should
there be a place where decisions are made based on opcode.
All other decisions are made based on the control line values
as computed by the main control or the ALU control.

To ensure that the simulation accurately models the cir-
cuit, a debug mode is required. In debug mode, each com-
ponent reports on its function as the instruction works its
way through the circuit. For example, Figure 7 shows what
the debug output for the first instruction from the example
in Figure 6 above (a memory read, lw) might look like. Each
component’s action is shown, even those whose actions end
up not being used by the instruction. Even the ALU, where
students may be tempted to implement a subtract instruc-
tion using subtraction, the action is modeled as an addition
with the subtrahend negated, as this is how the ALU would
be implemented in hardware.

Students are encouraged to develop their simulators in C,
as one of the goals of the course is to introduce them to that
language, but some choose to use Java or another language
they know well. We use a standard high-level language with-
out a library like SystemC [4], as the architecture we simu-
late is simple enough that the additional cost of learning the
library is likely more significant than any potential savings
in implementation time.

In addition to the simulator, students are required to pro-
vide a new MIPS machine code program along the lines of
the one shown in Figure 6 to perform some simple but hope-
fully interesting computation. This helps to reinforce their
understanding of the relationships among the MIPS assem-
bly instructions they wish to use, the MIPS machine instruc-
tions that represent them, and the actions of the circuit to
execute the instructions.

Finally, students are required to describe in detail how the
architecture and their simulator would need to be modified



Executing instruction: 0x8c010024

op=0x23/35, format=I, rs=0x00/0,

rt=0x01/1, imm=0x0024/36

PC+4: 0x00000004

Sign Extend: 0x00000024

ReadReg 1: R[0]=0x00000000

ReadReg 2: R[1]=0x00000000

Jump address: 0x00040090

ALU input MUX (from sign extend): 0x00000024

Branch offset: 0x00000090

ALU input A not inverted: 0x00000000

ALU input B not negated: 0x00000024

ALU result (ADD): 0x00000024, Zero=0

Read from memory at 0x00000024, value 0x00000003

Branch target: 0x00000094

Branch selection MUX not taking branch: 0x00000004

Write reg number: 0x01

Write reg data from memory: 0x00000003

New PC no jump: 0x00000004

Write reg: 0x00000003 to R[1]

Figure 7: Debug mode output for the execution of
the first lw instruction in the program in Figure 6.

to implement some of the instructions which are not part
of the required MIPS subset. For bonus points, they can
augment their simulator to implement those instructions and
provide example programs to demonstrate them.

3.2.2 Results

The project has successfully forced students to think care-
fully about how each component in the datapath works,
what information it has available as input, and what it pro-
duces as output. Considering each in isolation (as a small
segment of code) and planning the simulation order to en-
sure proper interaction of components is an intense and fairly
painful process for the students, not to mention the instruc-
tor who has a class full of students inside and outside his
office for the duration of the project.

While there is no meaningful way to compare students
who have completed the project with those who have not
(the course is typically taught to one section of students
once per year), we can examine some grading information.
In the most recent course which used this project (Fall 2011),
20 of the 23 students who were still actively engaged in the
course submitted a substantially complete simulator. The
others were in group of 3 that made an honest effort but
continued to have fundamental misunderstandings and did
not ask for help until it was too late. The final exam question
that was directly related to the project was very successful.
The overall score on the question was 84%, and over 90% if
we remove the scores of those students who did not complete
the project.

The most encouraging results from the project are also
those which are harder to quantify. Students coming for help
regularly ask the right questions. With many of them, there
is that moment when it clicks – they not only understand
how they need to implement the simulator, but the data-
path diagram and the whole concept of a circuit running
a program suddenly makes sense. Also, when class discus-
sion turned to the more complex pipelined datapath, it was

clear that their extensive experience with the single-cycle
datapath helped them to understand pipelining.

4. CONCLUSION AND FUTURE WORK
We have presented two approaches to laboratory projects

that help students grasp the workings of the datapath. In
one approach, students build a physical device that simu-
lates the flow of information from one component to an-
other until a particular instruction is completed. Students
applauded the lab and anecdotal evidence showed that exam
scores improved. The second approach requires students to
understand how the datapath circuit executes an instruc-
tion by simulating the low-level hardware components in
software.

It is extremely difficult to test the efficacy of such labs,
making it dangerous to draw any firm conclusions. However,
we believe that such hands-on projects help students learn,
as has been shown in other areas in general. At the very
least, the material is presented in a fresh way that students
enjoy much more than a traditional lecture. We will continue
our work on these labs and attempt to add more hands-on
experiences in the computer organization courses.
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