
“pp04”
2004/12/6
page

i

i

i

i

i

i

i

i

Approaches to

Architecture-Aware

Parallel Scientific

Computation

James D. Teresco∗, Joseph E. Flaherty†, Scott B.

Baden‡, Jamal Faik§, Sébastien Lacour¶, Manish

Parashar‖, Valerie E. Taylor∗∗ and Carlos A. Var-

ela††

Modern parallel scientific computation is being performed in a wide variety
of computational environments that include clusters, large-scale supercomputers,
grid environments, and metacomputing environments. This presents challenges for
application and library developers, who must develop architecture-aware software
if they wish to utilize several computing platforms efficiently.

Architecture-aware computation can be beneficial in single-processor environ-

∗Department of Computer Science, Williams College, Williamstown, MA 01267 USA,
(terescoj@cs.williams.edu).

†Department of Computer Science, Rensselaer Polytechnic Institute, Troy, NY 12180 USA,
(flaherje@cs.rpi.edu).

‡CSE Department, UC San Diego, USA, (baden@cs.ucsd.edu).
§Department of Computer Science, Rensselaer Polytechnic Institute, Troy, NY 12180 USA,

(faikj@cs.rpi.edu).
¶IRISA/INRIA, Rennes, France, and Northern Illinois University, USA,

(Sebastien.Lacour@irisa.fr).
‖The Applied Software Systems Laboratory, Department of Electrical and Computer

Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ 08855 USA,
(parashar@caip.rutgers.edu).

∗∗Department of Computer Science, Texas A&M University, College Station, TX 77842 USA,
(taylor@cs.tamu.edu).

††Department of Computer Science, Rensselaer Polytechnic Institute, Troy, NY 12180 USA,
(cvarela@cs.rpi.edu).



“pp04”
2004/12/6
page

i

i

i

i

i

i

i

i

ments. It takes the form of something as common as an optimizing compiler, which
will optimize software for a target computer. Application and library developers
may adjust data structures or memory management techniques to improve cache
utilization on a particular system [21].

Parallel computation introduces more variety, and with that, more need and
opportunity for architecture-specific optimizations. Heterogeneous processor speeds
at first seem easy to account for by simply giving a larger portion of the work to
faster processors, but assumptions of homogeneous processor speeds may be well-
hidden. If all processor speeds are the same, differences between uniprocessor nodes
and symmetric multiprocessing (SMP) nodes may be important. Computational
and communication resources may not be dedicated to one job, and the external
loads on the system may be highly dynamic and transient. Interconnection networks
may be hierarchical, leading to non-uniform communication costs. Even if targeting
only homogeneous systems, the relative speeds of processors, memory, and networks
may affect performance. Heterogeneous processor architectures (e.g., Sparc, x86)
present challenges for portable software development and data format conversions.
Some operating systems may provide support for different programming paradigms
(e.g., message passing, multithreading, priority thread scheduling, or distributed
shared memory). Resources may also be transient or unreliable, breaking some
common assumptions in, e.g., applications that use the Message Passing Interface
(MPI) standard [37]. Finally, scalability is a concern, in that what works well for a
cluster with dozens of processors will not necessarily work well for a supercomputer
with thousands of processors, or in a grid environment [34] with extreme network
hierarchies.

Many decisions that software developers can make may be affected by their tar-
get architectures. The choices can be algorithmic, such as when choosing a solution
method that lends itself better to shared memory/multithreading or to distributed
memory/message passing, as appropriate. The choice of parallelization paradigm
affects portability and efficiency. The single-program multiple-data (SPMD) with
message passing approach is often used because MPI is widely-available and highly
portable. However, this portability may come at the expense of efficiency. Other
options include shared memory/multithreading [16, 55], a hybrid of SPMD with
multithreading [8], the actor/theater model [1], and the Bulk Synchronous Par-
allel (BSP) [63] model. Parallelization can be achieved by a “bag-of-tasks” mas-
ter/worker paradigm, domain decomposition, or pipelining. Computation and/or
communication can be overlapped or reordered for efficiency in some circumstances.
A programmer may choose to replicate data and/or computation to eliminate the
need for some communication. Small messages can be concatenated and large mes-
sages can be split to achieve an optimal message size, given the buffer sizes and
other characteristics of a particular interconnect [58]. Communication patterns can
be adjusted. The computation can be made to use an optimal number of proces-
sors, processes, or threads, given the characteristics of the application and of the
computing environment [20]. Partitioning and dynamic load balancing procedures
can make tradeoffs for imbalance vs. communication minimization, or can adjust
optimal partition sizes, and can partition to avoid communication across the slowest
interfaces [29, 84].



“pp04”
2004/12/6
page

i

i

i

i

i

i

i

i

Any architecture-aware computation must have knowledge of the computing
environment, knowledge of software performance characteristics, and tools to make
use of this knowledge. The computing environment may come from a manual spec-
ification or may be discovered automatically at run time. Computing environment
performance characteristics can be discovered through a priori benchmarking, or
by dynamic monitoring. Software performance characteristics can be based on per-
formance models or on studies that compare performance.

Software can use such knowledge of the computing environment at any of a
number of the common levels of abstraction. Compiler developers and low-level
tool developers (e.g., MPI implementers) can make architecture-aware optimiza-
tions that are applicable to a wide range of applications. Other tool developers,
such as those designing and implementing partitioners and dynamic load balancers
or numerical libraries, can make their software architecture aware and benefit all
users of the libraries. Middleware systems can make architecture-aware adjustments
to computations that use them. Application programmers can make high-level de-
cisions in an architecture-aware manner, e.g., through their choice of programming
languages and parallel programming paradigm, by adjusting memory management
techniques, or by adjusting the parameters and frequency of dynamic load balanc-
ing.

This paper describes several efforts that were presented at a minisymposium
on architecture-aware parallel computing at the Eleventh SIAM Conference on Par-
allel Processing for Scientific Computing (San Francisco, 2004). The first approach,
the Prophesy framework by Taylor, et al., analyzes the performance of applications
running in parallel and distributed environments (Section 1). Section 2 describes
Baden’s work on canonical variant programming and on computation and commu-
nication scheduling. Next, the work of Lacour, et al., on topology-aware collective
communication in the grid-enabled MPI implementation, MPICH-G2, is described
(Section 3). Dynamic load balancing for heterogeneous and hierarchical systems is
described next, including work by Faik, et al. (Section 4), Teresco, et al. (Section 5),
and Parashar, et al. (Section 6). Finally, Varela’s approach to “worldwide com-
puting” shows how a middleware layer can help manage a computation in a widely
distributed and highly dynamic and transient computing environment (Section 7).

1 Prophesy: A Performance Analysis and Modeling
System for Parallel and Distributed Applications

1

Today’s complex parallel and distributed systems require tools to gain in-
sight into the performance of applications executed on such environments. This
section presents the web-based Prophesy system2 [95, 96], a performance analysis
and modeling infrastructure that helps to provide this needed insight. Prophesy
automatically instruments application software, records performance data, system
features and application details in a performance database, and provides automated

1Primary section author: Taylor, with Xingfu Wu and Rick Stevens
2http://prophesy.cs.tamu.edu



“pp04”
2004/12/6
page

i

i

i

i

i

i

i

i

modeling techniques to facilitate the analysis process. Prophesy can be used to de-
velop models based upon significant data, identify the most efficient implementation
of a given function based upon the given system configuration, explore the various
trends implicated by the significant data, and predict software performance on a
different system.

Figure 1. Prophesy framework.

Prophesy consists of three major components: data collection, data analysis,
and central databases (Figure 1). The data collection component focuses on the
automated instrumentation and application code analysis at the granularity levels
of basic blocks, procedures, and functions. Execution of the instrumented code
gathers a significant amount of performance information for automated inclusion
in the performance database. Manual entry of performance data is also supported.
Performance data can then be used to gain insight into the performance relationship
among the application, hardware, and system software.

An application goes through three stages to generate an analytical perfor-
mance model: (i) instrumentation of the application, (ii) performance data collec-
tion, and (iii) model development using optimization techniques. These models,
when combined with data from the system database, can be used by the predic-
tion engine to predict the performance in a different computing environment. The
Prophesy infrastructure is designed to explore the plausibility and credibility of
various techniques in performance evaluation (e.g., scalability, efficiency, speedup,
performance coupling between application kernels, etc.) and to allow users to use
various metrics collectively to bring performance analysis environments to the most
advanced level.

The Prophesy database must accommodate queries that lead to the develop-
ment of performance models, allow for prediction of performance on other systems,
and allow for one to obtain insight into methods to improve the performance of the
application on a given distributed system. Hence, the database must facilitate the
following query types:



“pp04”
2004/12/6
page

i

i

i

i

i

i

i

i

• Identify the best implementation of a given function for a given system con-
figuration (identified by the run-time system, operating system, processor
organization, etc.). This can be implemented by querying the database for
comparison of performance data on different systems.

• Use the raw performance data to generate analytical (nonlinear or linear)
models of a given function or application; the analytical model can be used
to extrapolate the performance under different system scenarios and to assist
programmers in optimizing the strategy or algorithms in their programs.

• Use the performance data to analyze application-system trends, such as scal-
ability, speedup, I/O requirements, communication requirements, etc. This
can be implemented by querying the database to calculate the corresponding
formula.

• Use the performance data to analyze user-specific metrics such as coupling
between functions.

The Prophesy database has a hierarchical organization, consistent with the hi-
erarchical structure of applications. The entities in the database are organized into
four areas: (i) Application information. This includes entities that give the appli-
cation name, version number, a short description, owner information and password.
Data are placed into these entities when a new application is being developed. (ii)
Executable information. This includes all of the entities related to generating an
executable of an application. These include details about compilers, libraries and
the control flow, and are given for modules and functions. Data are placed into these
entities when a new executable is generated. (iii) Run information. This includes
all of the entities related to running an executable. These are primarily details
about the program inputs and the computing environments used. Data are placed
into these entities for each run of a given executable. (iv) Performance statistics
information. This includes all of the entities related to the raw performance data
collected during execution. Performance statistics are collected for different granu-
larities (e.g., application, function, basic unit, and data structure performance).

The Prophesy automated model builder automatically generates performance
models to aid in performance analysis and evaluation of a given application or ex-
ecution environment. Prophesy supports two well-established modeling techniques:
curve fitting and parameterization, plus a composition method developed by the
Prophesy research group [79, 80]. Curve Fitting uses optimization techniques to
develop a model. The model builder uses a least squares fit on the empirical data
in the Prophesy database specified by the user to generate the model. The models
it generates are generally a function of some input parameters of the application
and the number of parameters. The system performance terms are clustered to-
gether with the coefficients determined by the curve fitting; such parameters are
not exposed to the user. The advantage of this method is the fact that only the
empirical data is needed to generate the models; no manual analysis is required.
The parameterization method combines manual analysis of the code with system
performance measurements. The manual analysis requires hand-counting the num-
ber of different operations in kernels or functions that are generally 100 lines of



“pp04”
2004/12/6
page

i

i

i

i

i

i

i

i

code or less. The manual analysis is used to produce an analytical equation with
terms that represent the application and the execution environment, allowing users
to explore different application and execution environment scenarios with parame-
terized models. The manual analysis step is the only drawback, but this step is done
only once per kernel. The composition modeling technique attempts to represent
the performance of an application in terms of its component kernels or functions.
These kernel performance models are combined to develop the full application per-
formance models. It is extremely useful to understand the relationships between
the different functions that compose the application, determining how one kernel
affects another (i.e., whether it is a constructive or a destructive relationship). Fur-
ther, this information should be able to be encapsulated into a coefficient that can
be used in a performance model of the application. In [79], the advantages of us-
ing the coupling values to estimate performance are demonstrated using the NAS
Parallel Benchmarks [10]. For BT (Block Tridiagonal) dataset A, the four kernel
predictor had an average relative error of 0.79%, while merely summing the times
of the individual kernels resulting in an average relative error of 21.80%.

Prophesy includes automatic instrumentation of applications, a database to
hold performance and context information, and an automated model builder for
developing performance models, allowing users to gain needed insights into appli-
cation performance based upon their experience as well as that of others. Current
research is focused on extending the tool to different application communities.

2 Canonical Variant Programming and Computation
and Communication Scheduling

3

Application performance is sensitive to technological change, and an impor-
tant factor is that the cost of moving data is increasing relative to that of per-
forming computation. This effect is known as the “memory wall.” A general ap-
proach for desensitizing performance to such change remains elusive. The result
can be a proliferation of program variants, each tuned to a different platform and
to configuration-dependent parameters. These variants are difficult to implement
owing to an expansion of detail encountered when converting a terse mathematical
problem description into highly tuned application software.

Ideally, there would exist a canonical program variant, from which all concrete
program variants unfold automatically, altering their behavior according to techno-
logical factors affecting performance. There has been some progress in realizing the
notion of canonical program variants through “self tuning software.” Self tuning
software has proven highly successful in managing memory hierarchy locality and
includes packages such as ATLAS [93], PhiPac [12], and FFTW [35]. The general
approach is to generate a search space of program variants, and to solve an opti-
mization problem over the search space. The crucial problem is how to optimize the
search space. Architecture cognizant divide and conquer [36] explored the notion
of separators for pruning search trees; these enable different levels of the mem-

3Primary section author: Baden



“pp04”
2004/12/6
page

i

i

i

i

i

i

i

i

ory hierarchy to be optimized separately. A related approach is to customize the
source code using semantic level optimizations, including telescoping languages [51],
Broadway [38], and ROSE [70]. Lastly, DESOBLAS takes a different approach: it
performs delayed evaluation using task graphs [57].

Another manifestation of the memory wall is the increased cost of interpro-
cessor communication in scalable systems. Reformulating an algorithm to tolerate
latency is a difficult problem owing to the need to employ elaborate data decomposi-
tions and to solve a scheduling problem. Because an overlapped algorithm requires
that communication and computation be treated as simultaneous activities, com-
munication must be handled asynchronously [7, 9, 31, 76]. The resultant split phase
algorithms are ad-hoc and prone to error [8], even for the experienced programmer,
and require considerable knowledge about the application. The resultant difficulties
have led to alternative actor-based models of execution including: Mobile Object
Layer [23], Adaptive MPI [41], and Charm++ [45]. These models support shared
objects with asynchronous remote method invocation. Data motion is implicit in
method invocation. Other relevant work includes DMCS [22], which supports sin-
gle sided communication and active messages, and SMARTS, which uses affinity to
enhance memory locality by scheduling related tasks “back to back” [87].

A new project called Tarragon has been started at UCSD. Tarragon supports a
non-bulk-synchronous, actor model of execution and is intended to simplify commu-
nication tolerant implementations. As with the other actor-based models, Tarragon
employs data driven execution semantics [43], e.g., coarse grain dataflow [6], to
manage communication overlap under the control of a scheduler. The data-driven
model is attractive because it does not require the programmer to hardwire schedul-
ing decisions into application code in order to manage communication overlap. As
with traditional data flow [5, 25, 44] parallelism arises among tasks which are in-
dependent. Interdependent tasks are enabled according to the flow of data among
them. A scheduler – rather than the application – determines an appropriate way
to order computations.

A Tarragon Task Graph is interpreted as a logical grouping of an iteration
space, along with a partial ordering of that grouping. The tasks are not objects
as in Charm++ or Mobile Object Layer, but an abstract description of compu-
tation to be carried out. This abstraction enables Tarragon to realize pipelining
optimizations across time-stepped simulations and to capture elaborate computa-
tional structures such as timestepped adaptive mesh hierarchies, and distinguishes
it from other actor-based models. Tarragon also differs in another fundamental
way. Whereas the other models support shared objects with asynchronous remote
method invocation, Tarragon does not support shared objects, and methods may
be invoked only locally. Data motion is explicit, reflecting the Tarragon philosophy
of exposing such expensive operations to the programmer.

Tarragon supports the notion of parameterized scheduling, which has the prop-
erty that the scheduler can read attributes decorating the task graph. These at-
tributes come in the form of performance meta-data, a concept which as been ex-
plored jointly with Kelly and others in the context of cross-component optimiza-
tion [50]. Performance meta-data may represent a variety of quantities, e.g., affin-
ity, priority or other metrics. The programmer is free to interpret the meaning



“pp04”
2004/12/6
page

i

i

i

i

i

i

i

i

of meta-data, while the scheduler examines their relative magnitudes in order to
make decisions. Parameterized scheduling differs from application-level scheduling
because application-dependent behavior can be expressed via meta data alone, i.e.,
without having to change the scheduler. The flexibility offered by parameterized
scheduling significantly enhances the capability to explore alternative scheduling
policies and metrics.

As with Charm++ and other efforts [82] Tarragon virtualizes computations.
That is, the workload is split such that each processor obtains many pieces of
work. Early results with a 3D elliptic solver using red-black relaxation have been
positive, with only modest overheads observed for virtualization factors of up to
nearly an order of magnitude [72]. Virtualization enhances the ability to overlap
communication via pipelining.

Tarragon is currently under development, and is being applied to a variety
of applications. We are also investigating compiler support for Tarragon using
the ROSE [70] compiler framework developed by Quinlan. ROSE is a tool for
building source-to-source translators realizing semantic level optimizations of C++
class libraries, and can extract semantic information from libraries such as Tarragon.
The resultant software will in effect be a domain specific language.

3 A Multi-Level Topology-Aware Approach to
Implementing MPI Collective Operations for
Computational Grids

4

Computational grids have a potential to yield a huge computational power.
Their utilization has been made a reality by grid access middleware like the Globus
Toolkit5, so more and more computational grids get deployed, as exemplified by
such projects as NASA IPG, European DataGrid, NSF TeraGrid6. In a typical
grid, several sites are interconnected over a Wide-Area Network (WAN). Within
each site, a number of computers are connected over a Local-Area Network (LAN).
Some of those computers may be gathered in clusters equipped with a very high-
performance network like Myrinet. Thus, computational grids raise many issues,
like heterogeneity in terms of computing resources and network links. As a grid
is made of geographically distributed resources, possibly spread across continents,
grid networks are inherently multi-layered, showing large network performance gaps
(bandwidth, latency) between every communication network level.

In this context, some MPI applications need to achieve high performance. To
reach that goal, an efficient MPI implementation must take into account the multi-
layered nature of the grid network. This is particularly true for the implementation
of MPI collective operations like MPI Bcast. Those functions involve several pro-
cesses running on a number of computers interconnected over various networks with
different performance characteristics.

4Primary section author: Lacour, with Nicholas Karonis and Ian Foster
5http://www.globus.org
6http://www.teragrid.org/



“pp04”
2004/12/6
page

i

i

i

i

i

i

i

i

Topology-unaware implementations of broadcast often make the simplifying
assumption that the communication times between all process pairs are equal. Un-
der this assumption, the broadcast operation is often implemented using a binomial
tree. In the example of Figure 2, the broadcast operation from process 0 to nine
other processes is completed in only four steps. This implementation is efficient in
terms of performance and load balancing as long as it is used within a homogeneous
network with uniform performance.

5

0

4

3
9

8 2 1

6

7

1

2

2 3

3

4

4

4

4

Figure 2. Broadcast using a binomial tree: processes are numbered from 0
(root) through 9, communication steps are circled.

If the ten processes are split into two clusters (processes 0 through 4 on one
cluster and processes 5 through 9 on another), then a topology-unaware implemen-
tation of broadcast incurs three inter-cluster messages over a lower performance
network (Figure 3). Existing two-level topology-aware approaches [42, 52] cluster

5

0

4

3
9

8 2 1

6

7

1

2

2 3

3

4

4

4

4

Figure 3. Topology-unaware broadcast using a binomial tree: 3 inter-
cluster messages (bold arrows) and 6 intra-cluster messages.

computers into groups. In Figure 4, the root of the broadcast first sends the message
to process 5 in the remote cluster, then processes 0 and 5 broadcast the message
within their respective clusters using a binomial-tree algorithm. This solution per-
forms all inter-cluster messaging first while also minimizing inter-cluster messaging.

A computational grid like the one described above typically involves multiple



“pp04”
2004/12/6
page

i

i

i

i

i

i

i

i

0
1

2
2

3

3
4

4

4

4

Cluster B

Cluster A

5

9

4

6

1

3

8

7

2

Figure 4. Topology-aware broadcast: only one inter-cluster message (bold arrow).

sites and may also include multiple clusters at a single site. The NSF TeraGrid,
for example, has a 32-bit cluster and a 64-bit cluster both located at Argonne
National Laboratory. Such grids induce three or more network levels (i.e., wide-area,
local area, and intra-cluster) with different network characteristics at each level. In
these grids, if the processes are grouped by clusters, the two-level topology-aware
approach will not minimize the number of inter-site messages. If, on the other hand,
the processes are instead grouped by sites, the two-level approach will not minimize
the number of inter-cluster messages within each site. A multi-level strategy is
needed, grouping the processes first by sites, and then by clusters in which both
inter-site and inter-cluster messages are minimized.

Early performance evaluations [46] of the multi-level approach have shown
significant performance gains for the broadcast operation. Encouraged by those
results, eleven of the fourteen collective operations of the MPI-1 standard have
been implemented in a multi-level topology-aware manner in MPICH-G27 [47].

4 Dynamic Load Balancing for Heterogeneous
Environments

8

An attractive feature of clusters is the ability to expand their computational
power incrementally by incorporating additional nodes. This expansion often re-
sults in heterogeneous environments, as the newly-added nodes and interconnects
often have superior capabilities. This section focuses on the Dynamic Resource
Utilization Model (DRUM)9 [29], which is a software library that provides support
for scientific computation in heterogeneous environments. The current focus is on
providing information to enable resource-aware partitioning and dynamic load bal-
ancing procedures in a manner that incurs minimal effort to set up, requires very

7http://www.globus.org/mpi/
8Primary section authors: Faik, Teresco, and Flaherty, with Luis G. Gervasio
9http://www.cs.williams.edu/drum



“pp04”
2004/12/6
page

i

i

i

i

i

i

i

i

few changes to applications or to dynamic load balancing procedures, and adjusts
dynamically to changing loads while introducing only small overheads.

A number of recent papers have addressed these and similar issues. Minyard
and Kallinderis [60] monitor process “wait times” to assign element weights that
are used in octree partitioning. Walshaw and Cross [91] couple a multilevel graph
algorithm with a model of a heterogeneous communication network to minimize a
communication cost function. Sinha and Parashar [75] use the Network Weather
Service (NWS) [94] to gather information about the state and capabilities of avail-
able resources; they compute the load capacity of each node as a weighted sum of
processing, memory, and communications capabilities.

DRUM incorporates aggregated information about the capabilities of the net-
work and computing resources composing an execution environment. DRUM can be
viewed as an abstract object that (i) encapsulates the details of the execution envi-
ronment, and (ii) provides a facility for dynamic, modular and minimally-intrusive
monitoring of the execution environment.

SP

SP

SP SP SP

Router

Router Router SMP

Router

Communication node

Processing node

SMPSMPSwitch

SP

SP SP

Figure 5. Tree constructed by DRUM to represent a heterogeneous network.

DRUM addresses hierarchical clusters (e.g., clusters of clusters, or clusters
of multiprocessors) by capturing the underlying interconnection network topology
(Figure 5). The tree structure of DRUM leads naturally to a topology-driven, yet
transparent, execution of hierarchical partitioning (Section 5). The root of the tree
represents the total execution environment. The children of the root node are high
level divisions of different networks connected to form the total execution environ-
ment. Sub-environments are recursively divided, according to the network hierarchy,
with the tree leaves being individual single-processor (SP) nodes or shared-memory
multiprocessing (SMP) nodes. Computation nodes at the leaves of the tree have data
representing their relative computing and communication power. Network nodes,
representing routers or switches, have an aggregate power calculated as a function
of the powers of their children and the network characteristics. The model of the



“pp04”
2004/12/6
page

i

i

i

i

i

i

i

i

execution environment is created upon initialization based on an XML file that con-
tains a list of nodes and their capabilities and a description of their interconnection
topology. The XML file can be generated with the aid of a graphical configuration
tool or may be specified manually.

Computational, memory and communication resource capabilities are assessed
initially using benchmarks, which are run a priori either manually or using the
graphical configuration tool. Capabilities may be updated dynamically by agents:
threads that run concurrently with the application to monitor each node’s com-
munication traffic, processing load and memory usage. Network monitoring agents
use the net-snmp library10 or kernel statistics to collect network traffic information
at each node. An experimental version that interfaces with NWS has also been
developed. Processor and memory utilization are obtained using kernel statistics.
The statistics are combined with the static benchmark data to obtain a dynamic
evaluation of the powers of the nodes in the model.

DRUM distills the information in the model to a single quantity called the
“power” for each node, which indicates the portion of the total load that should be
assigned to that node. For load-balancing purposes, a node’s power is interpreted
as the percentage of overall load it should be assigned based on its capabilities.
The power is computed as a weighted sum of processing and communication power,
each of which are computed based on static benchmark and dynamic monitoring
information.

DRUM has been used in conjunction with the Zoltan Parallel Data Services
Toolkit [27, 28], which provides dynamic load balancing and related capabilities to a
wide range of dynamic, unstructured and/or adaptive applications, to demonstrate
resource-aware partitioning and dynamic load balancing for a heterogeneous cluster.
Given power values for each node, any partitioning procedure capable of producing
variable-sized partitions, including all Zoltan procedures, may be used to achieve
an appropriate decomposition. Thus, any applications using a load-balancing pro-
cedure capable of producing non-uniform partitions can take advantage of DRUM
with little modification. Applications that already use Zoltan can make use of
DRUM simply by setting a Zoltan parameter, with no further changes needed.

We conducted an experimental study in which we used DRUM to guide
resource-aware load balancing in the adaptive solution of a Laplace equation on
the unit square, using Mitchell’s Parallel Hierarchical Adaptive MultiLevel software
(PHAML) [62]. Runs were performed on different combination of processors of a
heterogeneous cluster. Figure 6 shows the relative change in execution time ob-
tained when DRUM is used for different weights of the communication power. The
ideal relative change is a theoretical value that would be obtained if partitions sizes
perfectly match nodes processing capabilities and no inter-process communication
takes place during the execution. The complete DRUM experimental study can be
found in [29].

10http://www.net-snmp.org



“pp04”
2004/12/6
page

i

i

i

i

i

i

i

i

Figure 6. Ideal and achieved (using DRUM) relative changes in execu-
tion times compared to homogeneous partitioning for an adaptive calculation using
PHAML on different processor combinations.

5 Hierarchical Partitioning and Dynamic Load
Balancing

11

An effective partitioning or dynamic load balancing procedure maximizes effi-
ciency by minimizing processor idle time and interprocessor communication. While
some applications can use a static partitioning throughout a computation, others,
such as adaptive finite element methods, have dynamic workloads that necessi-
tate dynamic load balancing during the computation. Partitioning and dynamic
load balancing can be performed using recursive bisection methods [11, 74, 81],
space-filling curve (SFC) partitioning [15, 33, 61, 64, 66, 67, 68, 92] and graph
partitioning (including spectral [69, 74], multilevel [14, 39, 48, 90], and diffusive
methods [24, 40, 54]). Each algorithm has characteristics and requirements that
make it appropriate for certain applications; see [13, 85] for examples and [83] for
an overview of available methods.

CPU0 CPU2CPU1 CPU3CPU0

Network

CPU2CPU1 CPU3

Node 0 Node 3

Each SMP independently
computes 4−way RIB partitioning

MemoryMemory

8 processes compute one
2−way ParMetis partitioning

Figure 7. Hierarchical balancing algorithm selection for two 4-way SMP
nodes connected by a network.

11Primary section author: Teresco



“pp04”
2004/12/6
page

i

i

i

i

i

i

i

i

Modern clusters, supercomputers, and grid environments often include hi-
erarchical interconnection networks. For hierarchical and heterogeneous systems,
different choices of partitioning and dynamic load balancing procedures may be ap-
propriate in different parts of the parallel environment. There are tradeoffs in execu-
tion time and partition quality (e.g., amount of communication needed, interprocess
connectivity, strictness of load balance) [85] and some may be more important than
others in some circumstances. For example, consider a cluster of symmetric multi-
processor (SMP) nodes connected by Ethernet. A more costly graph partitioning
can be done to partition among the nodes, to minimize communication across the
slow network interface, possibly at the expense of some computational imbalance.
Then, a fast geometric algorithm can be used to partition to a strict balance, in-
dependently, within each node. This is illustrated in Figure 7. Such hierarchical
partitionings of a 1,103,018-element mesh used in a simulation of blood flow in a
human aorta are presented in [59].

Hierarchical partitioning and dynamic load balancing has been implemented in
the Zoltan Parallel Data Services Toolkit [27, 28]. Using Zoltan, application devel-
opers can switch partitioners simply by changing a run-time parameter, facilitating
comparisons of the partitioners’ effect on the applications. Zoltan’s hierarchical
balancing implementation allows different procedures to be used in different parts
of the computing environment [84]. The implementation utilizes a lightweight “in-
termediate hierarchical balancing structure” (IHBS) and a set of callback functions
that permit an automated and efficient hierarchical balancing which can use any
of the procedures available within Zoltan (including recursive bisection methods,
space-filling curve methods and graph partitioners) without modification and in
any combination. Hierachical balancing is invoked by an application the same way
as other Zoltan procedures. Since Zoltan is data-structure neutral, it operates on
generic “objects” and interfaces with applications through callback functions. A
hierarchical balancing step begins by building an IHBS, which is an augmented ver-
sion of the graph structure that Zoltan builds to make use of the ParMetis [49] and
Jostle [90] libraries, using the application callbacks. The hierarchical balancing pro-
cedure then provides its own callback functions to allow existing Zoltan procedures
to be used to query and update the IHBS at each level of a hierarchical balanc-
ing. After all levels of the hierarchical balancing have been completed, Zoltan’s
usual migration arrays are constructed and returned to the application. Thus, only
lightweight objects are migrated internally between levels, not the (larger and more
costly) application data. Zoltan’s hierarchical balancing can be used directly by an
application or be guided by the tree representation of the computational environ-
ment created and maintained by DRUM (Section 4).

Preliminary results applying hierarchical balancing to a parallel, adaptive sim-
ulation are promising [84]. A comparison of running times for a perforated shock
tube simulation [32] on a cluster of SMPs shows that while ParMetis multilevel
graph partitioning alone often achieves the fastest computation times, there is some
benefit to using hierarchical load balancing where ParMetis is used for inter-node
partitioning and inertial recursive bisection is used within each node. Hierarchi-
cal balancing shows the most benefit in cases where ParMetis introduces a larger
imbalance to reduce communication.



“pp04”
2004/12/6
page

i

i

i

i

i

i

i

i

Studies are underway that utilize hierarchical balancing on larger clusters, on
other architectures, and with a wider variety of applications. Hierarchical balancing
may be most beneficial when the extreme hierarchies found in grid environments
are considered.

6 Autonomic Management of Parallel Adaptive
Applications

12

Parallel structured adaptive mesh refinement (SAMR) [65, 66] techniques yield
advantageous ratios for cost/accuracy compared to methods based on static uniform
approximations, and offer the potential for accurate solutions of realistic models
of complex physical phenomena. However, the inherent space-time heterogeneity
and dynamism of SAMR applications coupled with a similarly heterogeneous and
dynamic execution environment (such as the computational grid) present signif-
icant challenges in application composition, runtime management, optimization,
and adaptation. These challenges have led researchers to consider alternate self-
managing autonomic solutions, which are based on strategies used by biological
systems to address similar challenges.

Figure 8. Conceptual Overview of GridARM.

GridARM [19] (Figure 8) is an autonomic runtime management framework
that monitors application behaviors and system architecture and runtime state,

12Primary section author: Parashar



“pp04”
2004/12/6
page

i

i

i

i

i

i

i

i

and provides adaptation strategies to optimize the performance of SAMR applica-
tions. The framework has three components: (i) services for monitoring resource
architecture and application dynamics, and characterizing their current state, ca-
pabilities, and requirements; (ii) a deduction engine and objective function that
define the appropriate optimization strategy based on runtime state and policies;
and (iii) an autonomic runtime manager that is responsible for hierarchically par-
titioning, scheduling, and mapping application working-sets onto virtual resources,
and tuning applications within the grid environment.

The monitoring/characterization component of the GridARM framework con-
sists of embedded application-level and system-level sensors/actuators. Application
sensors monitor the structure and state of the SAMR grid hierarchy and the nature
of its refined regions. The current application state is characterized in terms of
application-level metrics such as computation/communication requirements, stor-
age requirements, activity dynamics, and the nature of adaptations [77]. Similarly,
system sensors build on existing grid services such as NWS, and sense the current
state of underlying computational resources in terms of CPU, memory, bandwidth,
availability, and access capabilities. These values are fed into the system state syn-
thesizer along with system history information and predicted performance estimates
(obtained using predictive performance functions) to determine the overall system
runtime state.

The current application and system state along with the overall “decision
space” are provided as inputs to the GridARM deduction engine and are used to
define the autonomic runtime objective function. The decision space is comprised of
adaptation policies, rules, and constraints defined in terms of application metrics,
and enables autonomic configuration, adaptation, and optimization. Application
metrics include application locality, communication mechanism, data migration,
load balancing, memory requirements, adaptive partitioning, adaptation overheads,
and granularity control. Based on current runtime state and policies within the
decision space, the deduction engine formulates prescriptions for algorithms, con-
figurations, and parameters that are used to define the SAMR objective function.

The prescriptions provided by the deduction engine along with the objective
function yield two metrics - normalized work metric (NWM) and normalized re-
source metric (NRM), which characterize the current application state and current
system state respectively, and are the inputs to the autonomic runtime manager
(ARM). Using these inputs, the ARM defines a hierarchical distribution mecha-
nism, configures and deploys appropriate partitioners at each level of the hierarchy,
and maps the application domain onto virtual computational units (VCUs). A VCU
is the basic application work unit and may consist of computation patches on a sin-
gle refinement level of the SAMR grid hierarchy or composite patches that span
multiple refinement levels. VCUs are dynamically defined at runtime to match the
natural regions (i.e., regions with relatively uniform structure and requirements) in
the application, which significantly reduces coupling and synchronization costs.

Subsequent to partitioning, spatio-temporal scheduling operations are per-
formed across and within virtual resource units (VRUs) using Global-Grid Schedul-
ing (GGS) and Local-Grid Scheduling (LGS) respectively. During GGS, VCUs are
hierarchically assigned to sets of VRUs, whereas LGS is used to schedule one or



“pp04”
2004/12/6
page

i

i

i

i

i

i

i

i

more VCU within a single VRU. A VRU may be an individual resource (compute,
storage, instrument, etc.) or a collection (cluster, supercomputer, etc.) of phys-
ical grid resources. A VRU is characterized by its computational, memory, and
communication capacities and by its availability and access policy. Finally, VRUs
are dynamically mapped onto physical system resources at runtime and the SAMR
application is tuned for execution within the dynamic grid environment.

Note that the work associated with a VCU depends on the state of the com-
putation, the configuration of the components (algorithms, parameters), and the
current ARM objectives (optimize performance, minimize resource requirements,
etc.). Similarly, the capability of a VRU depends on its current state as well as the
ARM objectives (minimizing communication overheads implies that a VRU with
high bandwidth and low latency has higher capability). The normalized metric
NWM and NRM are used to characterize VRUs and VCUs based on current ARM
objectives.

The core components of GridARM have been prototyped and the adapta-
tion schemes within GridARM have been evaluated in the context of real applica-
tions such as the 3-D Richtmyer-Meshkov instability solver (RM3D) encountered
in compressible fluid dynamics. Application aware partitioning [17] uses current
runtime state to characterize the SAMR application in terms of its computation/-
communication requirements, its dynamics, and the nature of adaptations. This
adaptive strategy selects and configures the appropriate partitioner that matches
current application requirements, thus improving overall execution time by 5 to
30% as compared to non-adaptive partitioning schemes. Adaptive hierarchical par-
titioning [56] dynamically creates a group topology based on SAMR natural regions
and helps to reduce the application synchronization costs, resulting in improved
communication time by up to 70% as compared to non-hierarchical schemes. Reac-
tive system sensitive partitioning [75] uses system architecture and current state to
select and configure distribution strategies and parameters at runtime based on the
relative capacities of each node. This system sensitive approach improves overall
execution time by 10 to 40%.

Proactive runtime partitioning [97] strategies are based on performance predic-
tion functions and estimate the expected application performance based on current
loads, available memory, current latencies, and available communication bandwidth.
This approach helps to determine when the costs of dynamic load redistribution
exceed the costs of repartitioning and data movement, and can result in a 25%
improvement in the application recompose time. Architecture sensitive communi-
cation mechanisms [73] select appropriate messaging schemes for MPI non-blocking
communication optimization suited for the underlying hardware architecture and
help to reduce the application communication time by up to 50%. Workload sen-
sitive load balancing strategy [18] uses bin packing-based partitioning to distribute
the SAMR workload among available processors while satisfying application con-
straints such as minimum patch size and aspect ratio. This approach reduces the
application load imbalance between 2 and 15% as compared to default schemes that
employ greedy algorithms. Overall, the GridARM framework has been shown to
significantly improve the performance of SAMR applications [19].



“pp04”
2004/12/6
page

i

i

i

i

i

i

i

i

7 Worldwide Computing: Programming Models and
Middleware

13

The Internet is constantly growing as a ubiquitous platform for high-perfor-
mance distributed computing. This section describes a new software framework for
distributed computing over large scale dynamic and heterogeneous systems. This
framework wraps data and computation into autonomous actors, self organizing
computing entities, which freely roam over the network to find their optimal target
execution environment.

The actor model of concurrent computation represents a programming par-
adigm enforcing distributed memory and asynchronous communication [1]. Each
actor has a unique name, which can be used as a reference by other actors. Ac-
tors only process information in reaction to messages. While processing a message,
an actor can carry out any of three basic operations: alter its encapsulated state,
create new actors, or send messages to peer actors. Actors are therefore inherently
independent, concurrent and autonomous which enables efficiency in parallel exe-
cution [53] and facilitates mobility [3]. The actor model and languages provide a
very useful framework for understanding and developing open distributed systems.
For example, among other applications, actor systems have been used for enterprise
integration [86], real-time programming [71], fault-tolerance [2], and distributed
artificial intelligence [30].

The presented worldwide computing framework14 consists of an actor-oriented
programming language (SALSA) [89], a distributed run-time environment (WW-
C) [88], and a middleware infrastructure for autonomous reconfiguration and load
balancing (IOS) [26] (see Figure 9). SALSA provides high-level constructs for co-
ordinating concurrent computations, which get compiled into primitive actor op-
erations, thereby raising the level of abstraction for programmers while enabling
middleware optimizations without requiring the development of application-specific
checkpointing, migration, or load balancing behavior.

Load balancing is completely transparent to application programmers. The
IOS middleware triggers actor migration based on profiling application behavior
and network resources in a decentralized manner. To balance computational load,
three variations of random work stealing have been implemented: load-sensitive
(LS), actor topology-sensitive (ATS), and network topology-sensitive (NTS) random
stealing. LS and ATS were evaluated with several actor interconnection topologies
in a local area network. While LS performed worse than static round-robin (RR)
actor placement, ATS outperformed both LS and RR in the sparse connectivity and
hypercube connectivity tests, by a full order of magnitude [26]. We are currently
evaluating NTS in diverse heterogeneous grid environments.

The IOS software infrastructure naturally allows for the dynamic addition and
removal of nodes from the computation, while continuously balancing the load given
the changing resources. The ability to adapt applications to a dynamic network is

13Primary section author: Varela, with Travis Desell and Kaoutar El Maghraoui
14http://www.cs.rpi.edu/wwc/



“pp04”
2004/12/6
page

i

i

i

i

i

i

i

i

Figure 9. A modular middleware architecture as a research testbed for
scalable high-performance decentralized distributed computations

critical upon node and network failures, common in Internet computing environ-
ments. This adaptability is also critical in shared environments with unpredictable
variations in resource usage, e.g., by applications running concurrently on a grid.

Our current research focuses on resource management models and their mid-
dleware implementations for non-functional distributed systems behavior. Exam-
ples include data and process replication for fault tolerance, and split and merge
behavior to dynamically optimize the granularity of computation and migration.
We are particularly interested in the interaction of high-level programming abstrac-
tions and middleware optimizations [59]. While application-level load balancing
may in general afford better performance, the simplicity of the autonomous actor
programming model and the availability of computing power in large-scale dynamic
networks may ultimately make optimization in middleware more beneficial for sci-
entific computing [4, 78].

Acknowledgments

Teresco, Flaherty and Faik were supported by contract 15162 with Sandia National
Laboratories, a multi-program laboratory operated by Sandia Corporation, a Lock-
heed Martin Company, for the United States Department of Energy under Contract
DE-AC04-94AL85000. Baden was supported by the Institute for Scientific Com-
puting Research (DoE) and NSF contract ACI-0326013. Taylor was supported in



“pp04”
2004/12/6
page

i

i

i

i

i

i

i

i

part by the National Science Foundation under NSF NGS grant EIA-9974960, a
grant from NASA Ames, and two NSF ITR grants – GriPhyN and Building Human
Capital. Parashar’s work presented in this paper was supported in part by the
National Science Foundation via grants numbers ACI 9984357 (CAREERS), EIA
0103674 (NGS), EIA-0120934 (ITR), ANI-0335244 (NRT), CNS-0305495 (NGS)
and by DOE ASCI/ASAP via grant numbers PC295251 and 82-1052856. Varela’s
work was supported by a Rensselaer Seed Funding grant, two NSF grants (CISE
MRI, CISE-RR), and two IBM Shared University Research (SUR) grants.



“pp04”
2004/12/6
page

i

i

i

i

i

i

i

i

Bibliography

[1] G. Agha, Actors: A Model of Concurrent Computation in Distributed Systems,
MIT Press, 1986.

[2] G. Agha, S. Frølund, R. Panwar, and D. Sturman, A linguistic frame-
work for dynamic composition of dependability protocols, in Dependable Com-
puting for Critical Applications III, International Federation of Information
Processing Societies (IFIP), Elsevier Science Publisher, 1993, pp. 345–363.

[3] G. Agha, N. Jamali, and C. Varela, Agent Naming and Coordination:
Actor Based Models and Infrastructures, in Coordination of Internet Agents,
A. Ominici, F. Zambonelli, M. Klusch, and R. Tolksdorf, eds., Springer-Verlag,
2001, ch. 9, pp. 225–248.

[4] G. Agha and C. Varela, Worldwide computing middleware, in Practical
Handbook on Internet Computing, M. Singh, ed., CRC Press, 2004.

[5] Arvind and R. S. Nikhil, Executing a program on the MIT tagged-token
dataflow architecture, IEEE Transactions on Computers, 39 (1990), pp. 300–
318.

[6] I. Babb, R.G., Parallel processing with large-grain data flow technique, Com-
puter, 17 (1984), pp. 55–61.

[7] S. B. Baden and S. J. Fink, Communication overlap in multi-tier parallel
algorithms, in Proc. of SC ’98, Orlando, Florida, November 1998.

[8] S. B. Baden and S. J. Fink, A programming methodology for dual-tier mul-
ticomputers, IEEE Transactions on Software Engineering, 26 (2000), pp. 212–
216.

[9] S. B. Baden and D. Shalit, Performance tradeoffs in multi-tier formula-
tion of a finite difference method, in Proc. 2001 International Conference on
Computational Science, San Francisco, 2001.

[10] D. Bailey, T. Harris, W. Saphir, R. van der Wijngaart, A. Woo,

and M. Yarrow, The NAS parallel benchmarks 2.0, Tech. Report NAS-95-
020, NASA Ames Research Center, 1995.



“pp04”
2004/12/6
page

i

i

i

i

i

i

i

i

[11] M. J. Berger and S. H. Bokhari, A partitioning strategy for nonuniform
problems on multiprocessors, IEEE Trans. Computers, 36 (1987), pp. 570–580.

[12] J. Bilmes, K. Asanovic, C.-W. Chin, and J. Demmel, Optimizing matrix
multiply using phipac: A portable, high-performance, ANSI c coding methodol-
ogy, in International Conference on Supercomputing, 1997, pp. 340–347.

[13] E. Boman, K. Devine, R. Heaphy, B. Hendrickson, M. Heroux, and

R. Preis, LDRD report: Parallel repartitioning for optimal solver perfor-
mance, Tech. Report SAND2004–0365, Sandia National Laboratories, Albu-
querque, NM, February 2004.

[14] T. Bui and C. Jones, A heuristic for reducing fill in sparse matrix factoriza-
tion”, in Proc. 6th SIAM Conf. Parallel Processing for Scientific Computing,
SIAM, 1993, pp. 445–452.

[15] P. M. Campbell, K. D. Devine, J. E. Flaherty, L. G. Gervasio, and

J. D. Teresco, Dynamic octree load balancing using space-filling curves, Tech.
Report CS-03-01, Williams College Department of Computer Science, 2003.

[16] R. Chandra, R. Menon, L. Dagum, D. Koh, D. Maydan, and J. Mc-

Donald, Parallel Programming in OpenMP, Morgan Kaufmann, 2000.

[17] S. Chandra and M. Parashar, ARMaDA: An adaptive application-sensitive
partitioning framework for SAMR applications, in Proc. 14th IASTED Interna-
tional Conference on Parallel and Distributed Computing and Systems (PDCS
2002), Cambridge, 2002, ACTA Press, pp. 446–451.

[18] S. Chandra and M. Parashar, Enabling scalable parallel implementations
of structured adaptive mesh refinement applications. Submitted for publication
to the Journal of Supercomputing, 2004.

[19] S. Chandra, M. Parashar, and S. Hariri, GridARM: An autonomic run-
time management framework for SAMR applications in Grid environments,
in Proc. Autonomic Applications Workshop, 10th International Conference on
High Performance Computing (HiPC 2003), Hyderabad, 2003, Elite Publish-
ing, pp. 286–295.

[20] J. Chen and V. E. Taylor, Mesh partitioning for distributed systems: Ex-
ploring optimal number of partitions with local and remote communication, in
Proc. 9th SIAM Conf. on Parallel Processing for Scientific Computation, 1999.

[21] T. M. Chilimbi, M. D. Hill, and J. R. Larus, Cache-conscious struc-
ture layout, in Proc. ACM SIGPLAN ’99 Conf. on Prog. Lang. Design and
Implementaion, May 1999.

[22] N. Chrisochoides, K. Barker, J. Dobbelaere, D. Nave, and K. Pin-

gali, Data movement and control substrate for parallel adaptive applications,
Concurrency Practice and Experience, (2002), pp. 77–101.



“pp04”
2004/12/6
page

i

i

i

i

i

i

i

i

[23] N. Chrisochoides, K. Barker, D. Nave, and C. Hawblitzel, Mobile
Object Layer: A runtime substrate for parallel adaptive and irregular compu-
tations, Advances in Engineering Software, 31 (2000), pp. 621–637.

[24] G. Cybenko, Dynamic load balancing for distributed memory multiprocessors,
J. Parallel Distrib. Comput., 7 (1989), pp. 279–301.

[25] J. Dennis, Data flow supercomputers, IEEE Computer, 13 (1980), pp. 48–56.

[26] T. Desell, K. E. Maghraoui, and C. Varela, Load balancing of au-
tonomous actors over dynamic networks, in Proc. Hawaii International Con-
ference on System Sciences, 2004. HICSS-37 Software Technology Track, To
appear.

[27] K. Devine, E. Boman, R. Heaphy, B. Hendrickson, and C. Vaughan,
Zoltan data management services for parallel dynamic applications, Computing
in Science and Engineering, 4 (2002), pp. 90–97.

[28] K. D. Devine, B. A. Hendrickson, E. Boman, M. St. John, and

C. Vaughan, Zoltan: A Dynamic Load Balancing Library for Parallel Ap-
plications; User’s Guide, Sandia National Laboratories, Albuquerque, NM,
1999. Tech. Report SAND99-1377. Open-source software distributed at http:
//www.cs.sandia.gov/Zoltan.

[29] J. Faik, L. G. Gervasio, J. E. Flaherty, J. Chang, J. D. Teresco,

E. G. Boman, and K. D. Devine, A model for resource-aware load bal-
ancing on heterogeneous clusters, Tech. Report CS-04-03, Williams College
Department of Computer Science, 2004. Presented at Cluster ’04.

[30] J. Ferber and J. Briot, Design of a concurrent language for distributed
artificial intelligence, in Proc. International Conference on Fifth Generation
Computer Systems, vol. 2, Institute for New Generation Computer Technology,
1988, pp. 755–762.

[31] S. J. Fink, Hierarchical Programming for Block–Structured Scientific Calcu-
lations, PhD thesis, Department of Computer Science and Engineering, Uni-
versity of California, San Diego, 1998.

[32] J. E. Flaherty, R. M. Loy, M. S. Shephard, M. L. Simone, B. K. Szy-

manski, J. D. Teresco, and L. H. Ziantz, Distributed octree data struc-
tures and local refinement method for the parallel solution of three-dimensional
conservation laws, in Grid Generation and Adaptive Algorithms, M. Bern,
J. Flaherty, and M. Luskin, eds., vol. 113 of The IMA Volumes in Mathemat-
ics and its Applications, Minneapolis, 1999, Institute for Mathematics and its
Applications, Springer, pp. 113–134.

[33] J. E. Flaherty, R. M. Loy, M. S. Shephard, B. K. Szymanski, J. D.

Teresco, and L. H. Ziantz, Adaptive local refinement with octree load-
balancing for the parallel solution of three-dimensional conservation laws, J.
Parallel Distrib. Comput., 47 (1997), pp. 139–152.



“pp04”
2004/12/6
page

i

i

i

i

i

i

i

i

[34] I. Foster and C. Kesselman, The Grid: Blueprint for a New Computing
Infrastructure, Morgan-Kaufman, 1999, ch. Computational Grids.

[35] M. Frigo and S. G. Johnson, FFTW: An adaptive software architecture for
the FFT, in Proc. IEEE Intl. Conf. on Acoustics, Speech, and Signal Processing,
vol. 3, Seattle, WA, May 1998, pp. 1381–1384.

[36] K. S. Gatlin and L. Carter, Architecture-cognizant divide and conquer
algorithms, in Proc. Supercomputing ’99, November 1999.

[37] W. Gropp, E. Lusk, and A. Skjellum, Using MPI, M. I. T. Press, 1994.

[38] S. Z. Guyer and C. Lin, An annotation languge for optimizing software
libraries, ACM SIGPLAN Notices, 35 (2000), pp. 39–52.

[39] B. Hendrickson and R. Leland, A multilevel algorithm for partitioning
graphs, in Proc. Supercomputing ’95, 1995.

[40] Y. F. Hu and R. J. Blake, An optimal dynamic load balancing algorithm,
Preprint DL-P-95-011, Daresbury Laboratory, Warrington, WA4 4AD, UK,
1995.

[41] C. Huang, O. Lawlor, and L. Kale, Adaptive mpi, in Proc. 16th Interna-
tional Workshop on Languages and Compilers for Parallel Computing (LCPC
03), 2003.

[42] P. Husbands and J. C. Hoe, MPI-StarT: Delivering network performance
to numerical applications, in Proc. of the IEEE/ACM Supercomputing Con-
ference(SC98), Orlando, FL, Nov. 1998, p. 17.

[43] R. Jagannathan, Coarse-grain dataflow programming of conventional parallel
computers, in Advanced Topics in Dataflow Computing and Multithreading,
L. Bic, J.-L. Gaudiot, and G. Gao, eds., IEEE Computer Society Press, 1995,
pp. 113–129.

[44] J.R. Gurd, et al., The Manchester prototype dataflow computer, Communi-
cations of the ACM, 28 (1985), pp. 34–52.

[45] L. V. Kalé, The virtualization model of parallel programming : Runtime op-
timizations and the state of art, in LACSI 2002, Albuquerque, October 2002.

[46] N. Karonis, B. de Supinski, I. Foster, W. Gropp, E. Lusk, and

J. Bresnahan, Exploiting hierarchy in parallel computer networks to optimize
collective operation performance, in Proc. Fourteenth International Parallel and
Distributed Processing Symposium (IPDPS ’00), Cancun, 2000, pp. 377–384.

[47] N. T. Karonis, B. Toonen, and I. Foster, MPICH-G2: A grid-enabled
implementation of the Message Passing Interface, J. Parallel Distrib. Comput.,
63 (2003), pp. 551–563.



“pp04”
2004/12/6
page

i

i

i

i

i

i

i

i

[48] G. Karypis and V. Kumar, A fast and high quality multilevel scheme for
partitioning irregular graphs, SIAM J. Scien. Comput., 20 (1999).

[49] , Parallel multivelel k-way partitioning scheme for irregular graphs, SIAM
Review, 41 (1999), pp. 278–300.

[50] P. Kelly, O. Beckmann, A. Field, and S. Baden, Themis: Component
dependence metadata in adaptive parallel applications, Parallel Processing Let-
ters, 11 (2001), pp. 455–470.

[51] K. Kennedy, Telescoping languages: A compiler strategy for implementation
of high-level domain-specific programming systems, in Proc. 14th International
Parallel and Distributed Processing Symposium, May 2000, pp. 297–306.

[52] T. Kielmann, R. F. H. Hofman, H. E. Bal, A. Plaat, and R. Bhoed-

jang, MagPIe: MPI’s collective communication operations for clustered wide
area systems, in Proc. of the 1999 ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming (PPOPP’99), Atlanta, GA, May 1999,
pp. 131–140.

[53] W. Kim and G. Agha, Efficient Support of Location Transparency in Con-
current Object-Oriented Programming Languages, in Proc. Supercomputing’95,
1995.

[54] E. Leiss and H. Reddy, Distributed load balancing: design and performance
analysis, W. M. Kuck Research Computation Laboratory, 5 (1989), pp. 205–
270.

[55] B. Lewis and D. J. Berg, Multithreaded Programming with pthreads, Sun
Microsystems Press, 1997.

[56] X. Li and M. Parashar, Dynamic load partitioning strategies for managing
data of space and time heterogeneity in parallel SAMR applications, in Proc. 9th
International Euro-Par Conference (Euro-Par 2003), H. Kosch, L. Boszormenyi,
and H. Hellwagner, eds., vol. 2790 of Lecture Notes in Computer Science,
Klangenfurt, 2003, Springer-Verlag, pp. 181–188.

[57] P. Liniker, O. Beckmann, and P. Kelly, Delayed evaluation self-
optimising software components as a programming model, in Proc. Euro-Par
2002, Parallel Processing, 8th International Euro-Par Conference, B. Monien
and R. Feldmann, eds., vol. 2400 of Lecture Notes in Computer Science, Pader-
born, August 2002, pp. 666–674.

[58] R. M. Loy, AUTOPACK version 1.2, Technical Memorandum ANL/MCS-
TM-241, Mathemetics and Computer Science Division, Argonne National Lab-
oratory, 2000.



“pp04”
2004/12/6
page

i

i

i

i

i

i

i

i

[59] K. E. Maghraoui, J. E. Flaherty, B. K. Szymanski, J. D. Teresco,

and C. Varela, Adaptive computation over dynamic and heterogeneous net-
works, in Proc. Fifth International Conference on Parallel Processing and Ap-
plied Mathematics (PPAM 2003), R. Wyrzykowski, J. Dongarra, M. Paprzy-
cki, and J. Wasniewski, eds., vol. 3019 of Lecture Notes in Computer Science,
Czestochowa, 2004, Springer Verlag, pp. 1083–1090.

[60] T. Minyard and Y. Kallinderis, Parallel load balancing for dynamic ex-
ecution environments, Comput. Methods Appl. Mech. Engrg., 189 (2000),
pp. 1295–1309.

[61] W. F. Mitchell, Refinement tree based partitioning for adaptive grids, in
Proc. Seventh SIAM Conf. on Parallel Processing for Scientific Computing,
SIAM, 1995, pp. 587–592.

[62] , The design of a parallel adaptive multi-level code in Fortran 90, in Proc.
2002 International Conference on Computational Science, 2002.

[63] M. Nibhanapudi and B. K. Szymanski, High Performance Cluster Com-
puting, vol. I of Architectures and Systems, Prentice Hall, New York, 1999,
ch. BSP-based Adaptive Parallel Processing, pp. 702–721.

[64] J. T. Oden, A. Patra, and Y. Feng, Domain decomposition for adaptive
hp finite element methods, in Proc. Seventh Intl. Conf. Domain Decomposition
Methods, State College, Pennsylvania, October 1993.

[65] M. Parashar and J. C. Browne, Distributed dynamic data-structures for
parallel adaptive mesh-refinement, in Proc. IEEE International Conference for
High Performance Computing, 1995, pp. 22–27.

[66] M. Parashar and J. C. Browne, On partitioning dynamic adaptive grid
hierarchies, in Proc. 29th Annual Hawaii International Conference on System
Sciences, vol. 1, Jan. 1996, pp. 604–613.

[67] A. Patra and J. T. Oden, Problem decomposition for adaptive hp finite
element methods, Comp. Sys. Engng., 6 (1995), pp. 97–109.

[68] J. R. Pilkington and S. B. Baden, Dynamic partitioning of non-uniform
structured workloads with spacefilling curves, IEEE Trans. on Parallel and Dis-
tributed Systems, 7 (1996), pp. 288–300.

[69] A. Pothen, H. Simon, and K.-P. Liou, Partitioning sparse matrices with
eigenvectors of graphs, SIAM J. Mat. Anal. Appl., 11 (1990), pp. 430–452.

[70] D. Quinlan, B. Miller, B. Philip, and M. Schordan, A C++ infras-
tructure for automatic introduction and translation of OpenMP directives, in
Proc. 16th International Parallel and Distributed Processing Symposium, April
2002, pp. 105–114.



“pp04”
2004/12/6
page

i

i

i

i

i

i

i

i

[71] S. Ren, G. A. Agha, and M. Saito, A modular approach for programming
distributed real-time systems, J. Parallel Distrib. Comput., 36 (1996), pp. 4–12.

[72] F. D. Sacerdoti, A cache-friendly liquid load balancer, master’s thesis, Uni-
versity of California, San Diego, 2002.

[73] T. Saif and M. Parashar, Understanding the behavior and performance
of non-blocking communications in MPI, in Proc. 9th International Euro-Par,
Lecture Notes in Computer Science, Pisa, 2004, Springer-Verlag.

[74] H. D. Simon, Partitioning of unstructured problems for parallel processing,
Comp. Sys. Engng., 2 (1991), pp. 135–148.

[75] S. Sinha and M. Parashar, Adaptive system partitioning of AMR applica-
tions on heterogeneous clusters, Cluster Computing, 5 (2002), pp. 343–352.

[76] A. Sohn and R. Biswas, Communication studies of DMP and SMP machines,
Tech. Report NAS-97-004, NAS, 1997.

[77] J. Steensland, S. Chandra, and M. Parashar, An application-centric
characterization of domain-based SFC partitioners for parallel SAMR, IEEE
Trans. Parallel and Distrib. Syst., 13 (2002), pp. 1275–1289.

[78] B. Szymanski, C. Varela, J. Cummings, and J. Napolitano, Dynami-
cally reconfigurable scientific computing on large-scale heterogeneous grids, in
Proc. Fifth International Conference on Parallel Processing and Applied Math-
ematics (PPAM’2003), no. 3019 in LNCS, Czestochowa, Poland, September
2003.

[79] V. Taylor, X. Wu, J. Geisler, and R. Stevens, Using kernel couplings
to predict parallel application performance, in Proc. 11th IEEE International
Symposium on High-Performance Distributed Computing (HPDC 2002), Ed-
inburgh, 2002.

[80] V. Taylor, X. Wu, X. Li, J. Geisler, Z. Lan, M. Hereld, I. R. Jud-

son, and R. Stevens, Prophesy: Automating the modeling process, in Third
Annual International Workshop on Active Middleware Services, San Francisco,
2001.

[81] V. E. Taylor and B. Nour-Omid, A study of the factorization fill-in for
a parallel implementation of the finite element method, Int. J. Numer. Meth.
Engng., 37 (1994), pp. 3809–3823.

[82] J. D. Teresco, M. W. Beall, J. E. Flaherty, and M. S. Shephard, A
hierarchical partition model for adaptive finite element computation, Comput.
Methods Appl. Mech. Engrg., 184 (2000), pp. 269–285.

[83] J. D. Teresco, K. D. Devine, and J. E. Flaherty, Partitioning and
dynamic load balancing for the numerical solution of partial differential equa-
tions, Tech. Report CS-04-11, Williams College Department of Computer Sci-
ence, 2005. Chapter submitted to Numerical Solution of Partial Differential



“pp04”
2004/12/6
page

i

i

i

i

i

i

i

i

Equations on Parallel Computers, Are Magnus Bruaset, Petter Bjørstad, Aslak
Tveito, editors.

[84] J. D. Teresco, J. Faik, and J. E. Flaherty, Hierarchical partitioning
and dynamic load balancing for scientific computation, Tech. Report CS-04-04,
Williams College Department of Computer Science, 2004. Submitted to Proc.
PARA ’04.

[85] J. D. Teresco and L. P. Ungar, A comparison of Zoltan dynamic load
balancers for adaptive computation, Tech. Report CS-03-02, Williams College
Department of Computer Science, 2003. Presented at COMPLAS ’03.

[86] C. Tomlinson, P. Cannata, G. Meredith, and D. Woelk, The extensible
services switch in Carnot, IEEE Parallel and Distributed Technology, 1 (1993),
pp. 16–20.

[87] S. Vajracharya, S. Karmesin, P. Beckman, J. Crotinger, A. Malony,

S. Shende, R. Oldehoeft, and S. Smith, SMARTS: Exploiting temporal
locality and parallelism through vertical execution, in International Conference
on Supercomputing, 1999.

[88] C. Varela, Worldwide Computing with Universal Actors: Linguistic Abstrac-
tions for Naming, Migration, and Coordination, PhD thesis, University of Illi-
nois at Urbana-Champaign, 2001.

[89] C. Varela and G. Agha, Programming dynamically reconfigurable systems
with SALSA, in Proc. OOPSLA 2001, Tampa Bay, 2001, ACM.

[90] C. Walshaw and M. Cross, Parallel Optimisation Algorithms for Multilevel
Mesh Partitioning, Parallel Comput., 26 (2000), pp. 1635–1660.

[91] , Multilevel Mesh Partitioning for Heterogeneous Communication Net-
works, Future Generation Comput. Syst., 17 (2001), pp. 601–623. (originally
published as Univ. Greenwich Tech. Rep. 00/IM/57).

[92] M. S. Warren and J. K. Salmon, A parallel hashed oct-tree n-body algo-
rithm, in Proc. Supercomputing ’93, IEEE Computer Society, 1993, pp. 12–21.

[93] R. C. Whaley and J. J. Dongarra, Automatically tuned linear algebra
software, in Conf. High Performance Networking and Computing, Proc. 1998
ACM/IEEE conference on Supercomputing, Orlando, Florida, November 1998,
pp. 1–27.

[94] R. Wolski, N. T. Spring, and J. Hayes, The Network Weather Service: A
distributed resource performance forecasting service for metacomputing, Future
Generation Comput. Syst., 15 (1999), pp. 757–768.

[95] X. Wu, V. Taylor, J. Geisler, Z. Lan, R. Stevens, M. Hereld, and

I. Judson, Design and development of Prophesy Performance Database for
distributed scientific applications, in Proc. 10th SIAM Conference on Parallel
Processing, 2001.



“pp04”
2004/12/6
page

i

i

i

i

i

i

i

i

[96] X. Wu, V. Taylor, and R. Stevens, Design and implementation of
Prophesy Performance Database for distributed scientific applications, in Proc.
13th IASTED Parallel and Distributed Computing and Systems Conference
(PDCS2001), 2001.

[97] Y. Zhang, S. Chandra, S. Hariri, and M. Parashar, Autonomic proac-
tive runtime partitioning strategies for SAMR applications, in Proc. NSF Next
Generation Systems Program Workshop, IEEE/ACM 18th International Par-
allel and Distributed Processing Symposium (CDROM), Santa Fe, 2004, IEEE
Computer Society Press.


