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Abstract

The Zoltan dynamic load balancing library provides applications with a reusable
object oriented interface to several load balancing techniques, including coordinate
bisection, octree/space filling curve methods, and multilevel graph partitioners. We
describe enhancements to Zoltan’s octree load balancing procedure and its distributed
structures that improve performance of the space filling curve (SFC) traversals by
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exploiting similarities between the octree and SFC construction. The SFC implemen-
tation includes efficient Morton, Gray code, and Hilbert tree traversals. We present
the results of a number of scalability and partition quality studies utilizing the new
octree structures and orderings.

1 Introduction

Adaptive computational techniques provide a reliable, robust, and efficient means of solving
problems involving partial differential equations (PDEs) by finite difference, finite volume,
or finite element technologies [11]. With an adaptive approach, an initial mesh used to dis-
cretize the computational domain and numerical method used to discretize the PDEs are
enhanced during the course of the solution procedure in order to optimize, e.g., the computa-
tional effort for a given level of accuracy. Enhancement typically involves h-refinement [48],
where a mesh is refined or coarsened, respectively, in regions of low or high accuracy; r-
refinement [1, 2], where a mesh of a fixed topology is moved to follow evolving dynamic
phenomena; and p-refinement [3, 46], where the method order is increased or decreased, re-
spectively, in regions of low or high accuracy. Unfortunately, parallelism greatly complicates
an adaptive computation. Domain decomposition, data management, and interprocessor
communication must be dynamic since adaptive h- and p-refinement alter existing patterns.
The dynamic data structures used with adaptive software severely limit automatic parallel
optimization.

The Zoltan object-oriented, dynamic, load balancing library [12] contains several ge-
ometric and graph-theoretical algorithms that isolate load balancing from an application
and permit run-time selection of procedures such as coordinate bisection [6, 16, 48], oc-
tree [13, 20, 21, 32, 33] and space-filling curve methods [4, 38, 42|, refinement tree meth-
ods [34], and multilevel graph partitioning [30, 31, 52, 56]. Our interest is the Zoltan octree
load balancing procedure, which was originally developed [20, 21, 32, 33, 38| to exploit the
hierarchical structures found in both adaptive h-refinement and octree mesh generation [49].

Octree load balancing procedures can provide high-quality and efficient partitions for
large-scale scientific applications [20, 21, 32]. They produce small changes to the partition
when small imbalances occur [20], which is important since migration is often the most
significant performance factor [20]. Gervasio [25] incorporated octree load balancing into the
Zoltan library, and utilized space-filling curves [44] with Morton, Gray code, and Hilbert
orderings for tree traversals. Unfortunately, the Hilbert ordering was far less efficient than
the other two. Herein, we exploit similarities between the octree and space-filling curve
construction to create mappings that eliminate any performance differences between the
three traversal strategies.

We begin by describing Zoltan’s octree distributed octree structures and associated load
balancing procedure (§2.1 — §2.4). The various space-filling curve traversals (§2.5) and their
efficient implementation (§2.6) follow. A sequence of fixed-mesh and adaptive computations
appraise the performance of octree balancing with the various space-filling curve traversals
(83). We conclude with a discussion of our findings and suggested future directions (§4).



2 Octree Partitioning

2.1 Basic Structure

Octree partitioning was motivated by octree-based mesh generation [49], where a problem
domain is embedded in a cubic universe that is recursively subdivided into eight octants
wherever more resolution is required to produce an octree structure [50]. The universe is
represented by the root octant. Each octant is either a parent (or interior) octant, with
exactly eight children, or a leaf (or terminal) octant with no children.
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Figure 1: The construction of a quadtree for a square domain with a small hole. At Level 1,
only the root quadrant exists. At Level 2, one refinement (bisection) has occurred. Level 3
shows refinement of two of the Level 2 quadrants, and Level 4 shows refinement of one Level
3 quadrant.

Figure 1 shows a quadtree, the two-dimensional analog of an octree, covering a square
domain with a small hole. At each level, we show the tree represented as an overlay of
the domain and a more traditional tree structure. Octant refinement is the replacement
of a terminal octant by an interior octant with eight new terminal octants as children,
allowing for a greater resolution (a deeper subtree) in parts of the domain. For automatic
mesh generation, the amount and location of tree refinement is often controlled by domain
features and user-specified tolerances [24]. Similarly, coarsening replaces an octant whose
children are terminal octants by a single terminal octant.

Meshes of tetrahedral elements may be generated from the octree by using templates that
subdivide terminal octants into tetrahedra to provide a direct relation between the elements
and octants. Figure 2 shows an example of a 40-element triangular mesh generated from the
quadtree of Figure 1.

Octree structures may be constructed for meshes generated by other procedures or created
by adaptive refinement by associating an element with the octant containing its centroid.



Figure 2: Triangular 40-element mesh generated from the quadtree of Figure 1, and associ-
ation of mesh entities with leaf quadrants.

Thus, the entire domain and mesh are embedded in a cubic universe. Each element is inserted
into the octant of the tree containing its centroid. If the number of elements assigned to an
octant exceeds a prescribed tolerance, the octant is refined and its elements are distributed
to the appropriate offspring. The granularity of the tree should be fine enough to allow for a
good balance, since all elements in a terminal octant will be assigned to the same partition,
yet coarse enough to remain an order of magnitude smaller than the elements being parti-
tioned, for efficiency. In practice, octants are refined when they exceed a prescribed number
of elements, which is typically set at 40. Other spatially-distributed objects (e.g., particles)
may similarly be associated with octants and, thus, are amenable to octree partitioning.

2.2 Serial Partitioning
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Figure 3: Three-way quadtree partitioning of the mesh of Figure 2. Appropriate weights are
assigned to subtrees according to cost function (e.g., number of elements) during a depth-
first traversal (DFT, left). A second truncated DFT assigns subtrees to the three partitions
(right).

A depth-first traversal (DFT) of the octree determines all subtree “costs.” In the simplest
case, cost can be the number of elements in a sub-tree. With p-refinement, the cost would be



a function of the total degrees of freedom associated with a sub-tree. For a local refinement
method [20], elemental costs could be the inverse of an element’s size to reflect the extra
work involved in time stepping smaller elements more frequently than larger ones. Assuming
that the costs are the number of elements in a subtree, the upper left portion of Figure 3
shows the result of this process for the mesh of Figure 2. Since the total cost (T'C') of the
octree and the number of partitions (N P) are known, the optimal partition size (OPS) is

OPS =TC/NP. (1)

A second (truncated) DFT of the octree adds octants to the current partition if their inclusion
does not exceed OPS. If adding an octant’s entire subtree exceeds OPS, the traversal
descends the tree and continues. Terminal octants are not split; thus, if a terminal octant
overfills a partition, a decision must be made whether to add it or to close the current
partition, leaving it slightly under-filled, and start work on the next partition. This decision
is based on the relative level of imbalance and the cumulative cost of closed partitions to
avoid a very large final partition. Three-way partitioning of the mesh of Figure 2 is shown
on the right of Figure 3.

This second DFT defines a one-dimensional ordering of the leaf octants, which is divided
into segments corresponding to the partitioning. Members of any given segment tend to be
spatially adjacent and, thus, form a good partition. For simplicity, we have assumed that
each partition should contain (approximately) the same cost, but the procedure has been
generalized to produce weighted partitions, appropriate in the presence of, e.g., heterogeneous
processing nodes [18]. We further assume that the number of processes and the number of
partitions are equal, but the procedure is being modified to produce k-way partitions with
any number of cooperating processes [18].

2.3 Distributed Octree Structures

For scalability, an octree structure used for dynamic repartitioning must be distributed across
the cooperating processes [51]. It also must be constructed automatically in parallel.

Each octant maintains information about its region of space (bounding box), process
ownership, parent and offspring links, and attached objects and their costs for weighted load
balancing. In a distributed tree, links may cross process boundaries, and must include both
a process id and a pointer. A distributed tree also increases the complexity and overhead of
interprocess communication, octant refinement and pruning, and the insertion of new objects
(e.g., elements created or removed by adaptive h-refinement) into the correct octant.

2.3.1 Automatic Tree Construction

Initially, we calculate a bounding box for the entire domain by examining the centroid of
each object to be inserted into the tree. This initial object traversal may be avoided by
specifying the bounding box through a global bounds function [9]. A root node, representing
the entire domain, is created on each process. Each of the NP processes refines this root
octant in parallel to the initial refinement level

IRL = [logg(N P)] (2)
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(IRL)

to create 8 leaf octants. For a quadtree,

IRL = [log,(NP)], (3)

which produces one level of refinement for our three-process example (Figure 3).

This produces an identical global octree on each process. This global octree, while small
relative to the full tree to be generated, simplifies and improves the efficiency of traversal and
object insertion. Each terminal octant in the global octree is called a global octant. While
global octants are replicated on all processes, each is assigned a unique and permanent
owner as the process that initially contains its portion of the spatial domain. A map array
represents the entire global octree as a linear representation of the global octants. Once the
map array has been created, the top levels of the tree are no longer needed. The global tree
structure and the map array are shown in Figure 4 for the example of Figure 3.
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Figure 4: Three-way partitioning of leaf nodes of the global tree for the example of Figure 3.
Extra nodes are assigned to higher-numbered processes. Each process has a map array entry
for each global quadrant.

Next, each process calculates its range of leaf octants by a DFT. If the number of processes
does not evenly divide the number of leaf octants, excess octants are placed in the higher-
numbered partitions, with at most one extra octant assigned per partition (Figure 4). This
imbalance is countered by placing objects lying on octant boundaries in the lower-numbered
octants.

The global octants assigned to each process are initially placed into a local root list. 'The
local roots are the roots of the local subtrees that exist on each process. They are maintained



in their DFT order.
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Figure 5: Object insertion and tree refinement. Objects (representing mesh elements) are
inserted into the tree. Octants are refined as needed, and are labelled with their final object
counts (left). For each process, the map array, its local root list, and local subtrees are shown
(right).

Next, the objects to be partitioned are inserted into the octree. Parts of the tree will be
refined when inserted objects exceed the prescribed limit on the number of objects per leaf
octant (§2.1). The tree resulting from object insertion for the example of Figure 3 with a
refinement limit of five elements per quadrant is shown in Figure 5.

Objects to be inserted may reside on any process, and some objects will likely reside on
processes other than those owning their destination octants. Such objects are called orphans
and must be migrated to the appropriate process, as determined by a O(log(N P)) search
using the map array.

2.4 Repartitioning Algorithm

After object insertion, each process computes costs for each locally rooted subtree using
traversals within its domain with no interprocess communication. Prefix and global costs
are computed from the per-process cost totals, enabling each process to determine its position
in the global traversal.
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Figure 6: Octants and associated mesh elements after determination of their destination
processes for rebalancing. The numbers indicate the destination processes for each octant.

As with the serial procedure, each process traverses its subtrees to create partitions. Each
process determines its initial destination partition as

IDP = OPS/PC (4)

where PC' is the prefix cost. Each process traverses its subtrees with no interprocess com-
munication. A load counter computes the sum of the costs of octants assigned to the current
destination process (CDP). Once the load counter exceeds the OPS, the CDP is incre-
mented, the load counter is reset, and traversal continues. All remaining octants are assigned
to the last partition even if its load exceeds OPS (Figure 6).

When the traversals are complete, subtrees and their associated data are migrated, if
necessary, to their assigned destination process. Octant migration occurs in three stages.
First, octants migrating to the same process are collected and the destination process is
notified. The destination processes allocate space for the arriving data and notify the source
processes of their new addresses to update migrating octants’ remote parent or offspring
links. Finally, the updated octants are sent to their destination and are removed locally.
This strategy preserves the octant traversal order. Applications are responsible for object
(e.g., mesh element) migration as directed by Zoltan’s migration arrays to maintain flexibility.

Local roots are updated and communicated to every process. Each root octant is added
to the remote octant list in the map array element corresponding to the octant’s global
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Figure 7: Distributed tree and mesh following quadrant and object migration. The structure
has become more complex, with each process having a larger local root list. Octants labeled
with the same letter represent the same octant. The map array on processes 1 and 2 includes
a remote octant list. Process 0’s original tree (A) and Process 2’s second child (I) remain
local, so these map array entries do not have a remote octant list.

octree ancestor. Figure 7 shows the final partitioning and distributed tree structure for our
two-dimensional example.

Remote octant lists are limited in length by the total number of local root octants, which
is small relative to the size of the octree. The total number of “cuts” in the global ordering
is limited by the total number of partitions. Remote octants are introduced only when one
of these cuts separates an octant from its parent or siblings.

2.5 Space-Filling Curve Traversals

We have been using the generic term “traversal” to indicate an ordering, or linearization,
of the leaf octants of the octree. Since partitions are formed from contiguous segments
of this linearization, its form has a direct effect on the quality of the resulting partitions.
Space-filling curves provide a continuous mapping from one-dimensional to d-dimensional
space [44] that have been used to linearize spatially-distributed data for partitioning [4, 38,
39, 42], storage and memory management [10, 35, and computational geometry [5]. Herein,
we regard the space-filling curves as a way of organizing the octree traversals and, hence,
linearizing the leaf octants of the distributed octree.

Space-filling curves have many properties that make them useful for octree traversal [38,



39]. They are self similar and are typically constructed from a single stencil. As constructed,
the space-filling curve will visit each terminal quadrant or octant exactly once. Spatial
refinement is accompanied by a localized repetition of the stencil, subject to spatial rotations
and reflections. Thus, upon refinement, the space-filling curve is modified to visit each octant
offspring in place of its parent. By their construction, the space-filling curves preserve a
locality of the mapping onto the d-dimensional hyperspace. Thus, points that are close in
hyperspace are typically close on the curve.

A space-filling curve may be constructed by using a string-rewriting rule [43], which
we do by (i) constructing a template curve that represents one unit of refinement in a
subdivision of the domain, (i7) constructing transformations to project the curve to higher
levels of refinement, and (ii7) determining the final curve by recursive applications of the
rewriting rule (§2.6). The traversal ordering and, ultimately, the partitioning are determined
by reading the string from beginning to end. Three orderings are considered: Morton (§2.5.1),
Gray code (§2.5.2), and Hilbert (§2.5.3)

2.5.1 Morton Ordering

The Morton (Z-code or Peano) ordering [36, 37], originally used in our octree partitioning
software [20], is a simple space-filling curve that traverses a quadrant’s children in a z-like
pattern in the order: I, I, III, IV (Figure 8). The pattern at each refinement is identical to
that used by its ancestors, so no rotations or reflections are performed. Without these, there
can be large “jumps” in its linearization, particularly as the curve transitions from quadrant
IT to quadrant III. The jumps result in spatially distant parts of the domain being adjacent
in the linearization. Nevertheless, we shall see that the Morton ordering is competitive (§3)
and, because of its simplicity, provides a base ordering for all space-filling curves (§2.6).

Figure 8: Template curve for the two-dimensional Morton ordering (left), its first level of
refinement (center), and an adaptive refinement (right).

The three-dimensional version of the Morton ordering appears in Figure 9. The template

consists of two “Z” curves, with the end of the first connected to the start of the second.
The “jumps” are even more apparent in three dimensions.
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Figure 9: Template curve for the three-dimensional Morton ordering (left), and its first level
of refinement (right). The numbers indicate the traversal order of leaf octants.

2.5.2 Gray Code Ordering

With Gray code ordering [15], quadrants are traversed by their “Gray code” sequence [26],
where adjacent quadrants differ only by one bit in a binary representation. Letting 00, 01,
10, and 11, correspond to quadrants I, II, III, and IV, respectively, leads to a bracket-like
template with quadrants ordered I (00), IT (01), IV (11), and IIT (10). However, the resulting
curve is self-intersecting, and not a valid space-filling curve. Adding a reflection to flip the
bracket template in two of the quadrants eliminates the self-intersection, producing the
modified Gray code ordering shown in Figure 10. While not self-intersecting, the modified
gray code ordering still contains jumps that lead to the separation of physically close objects
in the space-filling curve.

Figure 10: Template curve for the two-dimensional Gray code space filling curve (left), its
first level of refinement with rotations to eliminate self intersections (center), and an adaptive
refinement (right).
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2.5.3 Hilbert Ordering

The Hilbert ordering uses the Peano-Hilbert space-filling curve [7, 40, 41] to order quad-
rants. It uses the bracket-like template of Gray code ordering, with extra rotations and
inversions to keep quadrants closer to their neighbors. It may appear as though this added
complexity makes the Hilbert ordering harder to construct, but this will not be the case with
our implementation (§2.6). Hilbert orderings appear in Figure 11. The three-dimensional
Hilbert template consists of two two-dimensional brackets connected at one endpoint with
the ordering of the second bracket being opposite to that of the first (Figure 12).

Figure 11: Template curve for the Hilbert ordering (left), its first level of refinement (center),
and an adaptive refinement (right).

Figure 12: Template curve for the three-dimensional Hilbert ordering (left), and its first level
of refinement (right). The numbers indicate the traversal order of leaf octants.

12



2.6 Octant Ordering Implementation

Fast execution is essential for a successful load balancing algorithm. Since generating the
Morton ordering is simple and efficient, we obtain the other orderings from it by providing
appropriate mappings. With this technique, there is no appreciable difference in the gener-
ation times of the Morton, Gray code, and Hilbert orderings, whereas direct generation of
the Hilbert ordering [14] was much slower than the Morton ordering. Our mappings also
facilitate the implementation of new orderings, since they only require the specification of
“orientation” and “ordering” tables. A similar technique was used to generate the Hilbert
curve in the context of spatial databases [29].

The transformations needed for both Gray code and Hilbert ordering are 90° rotations,
which allow mappings of fixed size since a series of transformations becomes cyclic. The Gray
code ordering requires only two orientations in R? and four in R®. The more complex Hilbert
ordering uses four orientations in R? and 24 in R®. The mappings are encoded using ordering
and orientation tables of dimension o4 x 2¢, where o4 is the number of unique orientations of
the template curve in d(= 2, 3) dimensions. A refining parent with orientation i determines
the ordering and orientation of its offspring from row i of each table, i = 0,1,...,04 — 1.
Rows of the ordering table specify the Morton ordering of the offspring and rows of the
orientation table specify the orientations to assign to the newly-created offspring. Tables 1,
3, 2, and 4 provide the orderings and orientations of Gray code and Hilbert indexing in two
and three dimensions.

Ordering Orientation
0(1]3[2(]0|1]1]0
312|0(1][1/0]0|1

Table 1: Ordering and orientation tables used to map between Gray code and Morton space-
filling curve in two dimensions. Row ¢ determines the ordering and orientation of offspring
when a parent with orientation ¢ is refined.

Ordering Orientation
O[1(3]2[{6|7|5[4]/0(1]2[3]32|1]0
50416[713[2|01(]1/0(3]2]2]|3|0]|1
312(0]1 (546723 ]0]1]1]0|3]2
6(7[5]4(0|13[2]3[2]1]{0]0|1|2]3

Table 2: Ordering and orientation tables used to map between Gray code and Morton space-
filling curve in three dimensions. Row ¢ determines the ordering and orientation of offspring
when a parent with orientation 7 is refined.

For example, consider the initial template and first refinement of the Hilbert curve (Fig-
ure 13). The root quadrant has orientation 0, so the offspring at the first level are ordered
according to the Morton index sequence given in row 0 of the ordering Table 3: {0 1 3 2}.
These offspring are assigned orientations according to row 0 of the orientation Table 3: {1
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Ordering Orientation
O(1(3]2([1]0]0]2
0(2(3]1([0]1]1]3
311(0]2([3]2]2]0
312(0(1]1213]3]1

Table 3: Ordering and orientation tables used to map between Hilbert and Morton space-
filling curve in two dimensions. Row ¢ determines the ordering and orientation of offspring
when a parent with orientation ¢ is refined.

Ordering Orientation
011326754 1]2]0|3|4,0|5b5]6
01462375107 |1 |8 |5 |1[4]09
O|1|5|4/6|7 (32150 ] 22220 2 |19]23
5111046237206 |3 |23|15| 3 |16 22
3171612104 (5122134 12|11 4| 1|20
6(7(3[2[0]1 5411195 20225 |0 |12
511(3[7]6[2(0(4|]9]3]6 |2 21,6 [17]0
0{4|5|1 37|62 10 1 |7 |11 12| 7 |13|14
5141013267129 |8 |14]10| 8 |18 11
51416[7[3[2(0[1 6|89 |7 |17|9 |21]1
012315764 7 |15/1016|13|10]|12]|17
614(0[2|3|1 5|75 |14|11]9 |0 ]11|22] 8
517131102164 8201219181210 5
3171510462184 |13|5 |8 |13 719
614|573 |1(0 (2|17 11|14 1 |6 |14|23| 7
012645731 211011518119 |15]20 |21
620451 (3719171621 | 2 16| 3 |18
61237510414 |16|17 15|23 |17 | 6 |10
312/0(1(5[4(6|7|13]|21 |18 17| 7 |18| 8 |16
6|7|5(4]0]1 (3216|5194 |3 |[19] 2 |13
5171614101231 311212013 ]16|20| 15| 4
31216 |7|5[4(0]1][23,18]21 10|14 21| 9 |15
31110264 (57| 423|226 |1 22|11 3
315|716 [4(0]2([2122]|23] 0 23 14| 2

Table 4: Ordering and orientation tables used to map between Hilbert and Morton space-
filling curve in three dimensions. Row ¢ determines the ordering and orientation of offspring
when a parent with orientation ¢ is refined.

0 0 2}. The next refinement uses this orientation information to determine the order and
orientation of their offspring. For example, the orientation in quadrant 0 is 1, so we use row
1 of the tables in Table 3 to determine the offspring order and orientation as {0 2 3 1} and

14



Orient: 0 Orient: 1

Orient: 0 Orient: 2

Figure 13: The use of the ordering and orientation tables to generate the first two levels
of the two-dimensional Hilbert ordering. The left diagram shows the refinement of the root
quadrant, with child ordering {0 1 3 2} and orientations {1 0 0 2} given by row 0 of the
tables in Table 3. The right shows the next level of refinement, guided in each quadrant by
the row of Tables 3 corresponding to the orientation of the parent in that quadrant.

{0 11 3}, respectively.

The ordering and orientation tables define a string rewriting system with the string
representing the terminal quadrants or octants that the curve passes through. In the example
of Figure 13, the original bracket template is represented by the string {0 1 3 2}. Upon
refinement, we “rewrite” the string by replacing each entry by four new entries, each of
which consists of the old entry concatenated with an appropriate character from a row of the
ordering table. For the refinement shown in Figure 13, the 0 (with orientation 1) is replaced
by {00 02 03 01}. Repeating this for the remaining three quadrants gives the string {00
02 03 01 10 11 13 12 30 31 33 32 23 21 20 22} describing the Hilbert curve with one level
of refinement. The rewriting applies to adaptively-refined curves as well; thus, the string
representing the Hilbert curve on the right of Figure 11 is {00 02 03 01 1 3 23 21 202 201
200 203 22}.

3 Computation

We appraise the performance of octree load balancings using tetrahedral-element meshes
arising in applications under investigation. Partition quality (§3.1) and partition execution
time are measured for static (fixed-mesh) computation. For successive rebalancings of an
adaptive h-refinement computation, we examine partition quality and balancing execution
time, as they influence our most important concern: the actual solution time of the compu-
tation.

The following four meshes were chosen for our studies to represent a variety of mesh sizes
and geometric complexity.

e Comne: This is a 42,786-element mesh, used to model a shock wave in a compressible
flow impacting the side of the cone. Only half of the cone is modeled [19].
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e Muzzle: This is a 169,733-element mesh used in the simulation of unsteady com-
pressible flow in perforated shock tube. This mesh is a quarter cylinder with half of a
cylindrical venting hole [17].

e Onera wing: This is a 85,567-element mesh of the flow about an Onera M6 wing,
used in transonic flow simulations [§].

e Artery: Thisis a 1,103,018-element mesh generated from magnetic resonance imaging
data of human arteries, used in blood flow simulations [53].

3.1 Partition Quality

The quality of the partitions used to distribute a computation has a significant effect on
solution time for many applications [8]. While many factors may be important when consid-
ering the “quality” of a partitioning [27], the most common are computational balance and
partition boundary size. We will quantify partition quality using three metrics: (i) surface
index, (i7) interprocess connectivity, and (iii) intraprocess connectivity. Our examples assign
exactly one partition per process.

3.1.1 Surface Indices

Surface indices measure interprocess communication volume. In our examples, they are anal-
ogous to surface to volume ratios, with the number of element faces on partition boundaries
being viewed as “surface area” relative to the “volume” of element faces in a partition. A
large ratio of faces on partition boundaries to total faces indicates a large inter-processor
communication volume.

Thus, for NP partitions P = Py, P,, ..., Pyp, let b; denote the number of partition-
boundary faces and f; denote the total number of faces of P;. The maximum local surface
index is ;

Ty = i:?}%}]i/P ?z (5)
Let b; denote the total number of boundary faces in all partitions and f; the total number
of faces in all partitions. The global surface index is

by
ra = —, 6
¢=7 (6)
and the average local surface index is
NP
1 b;
TA = NP ;_1 E (7)

The average local surface index counts boundary entities once for each partition sharing
that entity, while the global surface index counts each boundary entity exactly once. When
considering only mesh faces as boundary entities, as in our examples, r4 = 2rq, since a par-
tition boundary face exists in exactly two partitions. Small differences are introduced when
considering mesh edges or vertices, which may be shared among three or more partitions.
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3.1.2 Interprocess Connectivity

Interprocess connectivity, or interprocess connection density, is the percentage of other pro-
cesses with which each process must communicate. This correlates to the number of message
startups needed during a solution process. This is especially important for an interconnection
network with high message latency. Exchanging information with a number of neighboring
processes often requires a serialization of message setup, making the maximum interprocess
connectivity an important measure of scalability. These measures can also be significant
when network topology allows nearest-neighbor communication to be significantly faster
than more general communication.

3.1.3 Intraprocess Connectivity

Intraprocess connectivity measures the number of disjoint regions assigned to a given pro-
cess. Such disconnection, also known as sub-domain splitting [28], can result from repeated
repartitioning using some algorithms [8], or from unfortunate cutting planes in an algorithm
such as orthogonal coordinate bisection [6] or octree partitioning. With octree partition-
ing, disjoint regions may also be the result of partitions spanning “jumps” in the traversal
ordering (§2.5).

Sub-domain splitting makes the interprocess boundary larger than necessary and can
adversely effect the performance of some linear solution procedures [55]. Two regions are
face-connected if they share a common face, edge-connected if they share a common edge, and
vertex-connected if they share a common vertex. The intraprocess connectivity is computed
as the number of disjoint connected components per process for each degree of connectivity.
Unlike the other metrics, intraprocess connectivity can be expensive to compute since all
mesh regions must be traversed to form the connectivity graphs.

3.1.4 Partition Quality

We present surface index metrics (Figure 14) and interprocess adjacencies (Figure 15) for
each sample mesh, using the Morton, Gray code, and Hilbert traversals of the octree. These
studies use from 4 (8 for the Artery mesh) to 56 processors of an IBM SP computer at
Rensselaer.

The Hilbert ordering generally achieves the best average and maximum surface indices
for three of the meshes (Cone, Onera, and Artery), followed in each case by Morton ordering
and Gray code ordering (Figure 14). The ordering has little apparent effect on the Muzzle
mesh. We will see (§3.2) that, following refinement and repartitioning, Hilbert orderings
produce superior surface indices for the Muzzle mesh as well. As expected, surface index
measurements are generally ranked according to the discontinuities found in the space-filling
curves.

Interprocess adjacencies for the Artery, Cone, and Muzzle meshes are generally lowest for
the Hilbert ordering, next for the Morton ordering, and highest for the Gray code ordering
(Figure 15). The Artery mesh shows only slight differences between the three orderings
as a result of its complex structure and large size that make it difficult for any ordering
to show a clear advantage. Interprocess adjacencies for the Onera mesh are ranked in the
opposite order (Figure 15). The mesh structure, a flat, compact concentration of fine mesh
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Figure 14: Surface indices vs. number of processes (N P) for Cone (top left), Onera (top
right), Muzzle (lower left), and Artery (lower right) meshes. Solid lines show the average
surface index while the dashed lines show the maximum surface index.

elements near the wing surface, appears to favor the Gray code and Morton orderings. This
underscores the importance of mesh structure on load balancing performance, and shows
how no traversal is optimal in all situations.

3.2 Dynamic Load Balancing for an Adaptive Analysis

To illustrate dynamic load balancing performance, we solve a finite element problem for the
unsteady compressible flow through a vented cylinder using six adaptive h-refinement steps
(and rebalancings) of the Muzzle mesh [17].

Load balancing uses element weights specified as the inverse of the radius of a sphere
inscribed in each element to account for the computational imbalance introduced by the
LRM.

3.2.1 Partition Quality

Figures 16 and 17 show the partition quality metrics after each rebalancing step for the
perforated shock tube problem on 28 and 56 processes, using Morton and Hilbert orderings.
(Gray code traversals produced poorer decompositions and were not included.) Surface
indices for the 28 (Figure 16) and 56 (Figure 17) process cases are, respectively, marginally
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and approximately 10% better with the Hilbert ordering than with the Morton ordering.
In both cases, the Hilbert ordering achieves better interprocess connectivity, with a 25%
difference in the 56 process case. Figure 16 shows average and maximum face connectivity
measurements and the number of face connected components. No significant difference is
seen in face connectivity, and the number of connected components does not change during
the computation despite the fact the mesh size increases.

3.2.2 Solution Time

Ultimately, total solution time is the only important measure. Solution times when the
perforated shock tube problem was run on 56 processors of an IBM SP computer for eight
refinement steps using octree balancing with Hilbert and Morton orderings appear in Fig-
ure 18. Times have been averaged over several runs to avoid anomalous effects. The results
indicate a 4% decrease in execution time with the Hilbert ordering. The effect is less no-
ticeable with tests on fewer processes. The improved solution time with Hilbert ordering is
primarily due to the lower interprocess connectivity and, to a lesser degree, the improved
surface index. While both represent a measure of communication cost, interprocess connec-
tivity corresponds more closely to message latency cost, which is a significant factor on the
IBM SP computer. With more processes and refinement steps the difference in solution time
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would be a more significant factor.

4 Discussion

The new space-filling curve traversals in the octree load balancer, in particular the Hilbert
ordering, provide better partition quality, measured by surface index and interprocess con-
nectivity. Our new implementation of the traversals makes Hilbert ordering efficient, and a
viable option for use in real problems, as both Hilbert and Gray code ordering are as inex-
pensive as Morton. Hilbert ordering generally achieves the best resulting partitions, likely
due to the continuous nature of the Hilbert curve. In general, the quality metrics for the
traversals are ranked by the discontinuities evident in the orderings, with Hilbert being the
best, followed by Morton and Gray code. The extent of these differences are highly depen-
dent on the mesh structure, and the rankings were different in some cases. It is not clear
that one ordering should be used in all circumstances but as a general rule, Hilbert is a good
choice. This is consistent with studies that found the Hilbert ordering beneficial in other
contexts [5, 29, 35, 42]. Similar studies for other types of problems are necessary to make a
stronger statement comparing the space-filling curves.

The octree structures described are designed to allow dynamic updating between succes-
sive load balancing steps. Early experiments with these structures showed them to be quite
useful in reducing balancer startup costs and the total amount of communication needed.
However, recent enhancements to Zoltan allow a more efficient implementation of the “recre-
ated tree” version of the octree load balancer, which minimizes or even eliminates the benefit
of the maintained structures. We believe that maintaining load-balancing related structures
in the octree load balancer as well as other Zoltan load balancers must be investigated,

21



especially when they are being used for applications where adaptive steps are frequent but
produce only incremental changes to the mesh, and hence, the partitioning. Maintaining
the octree has the additional advantage that it can be used for other purposes, e.g., multi-
level preconditionings of iterative linear algebraic procedures [55], adaptive h-refinement [47],
localized spatial searches [45], and hierarchical visualization [22, 23].

Additional areas of future work related to octree balancing include predictive load bal-
ancing [17] and fast octant neighbor finding [51]. These have been implemented and tested in
other applications. Performance of the octree orphan insertion phase could be improved with
the addition of neighbor finding links in the octants, which could be used to speed the search
for the correct owning octant. Work is underway to handle multiple partitions per process.
Multiple partitions can be made to utilize hierarchical partition models such as Rensselaer
Partition Model [54]. This may provide better cache utilization and a framework for multi-
threading. It could also improve performance on heterogeneous and hierarchical computers.
A machine model to allow architecture-dependent load balancing is under development.
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