Automatic Deployment of MPI Applications on a Computational Grid

Sébastien Lacour, Christian Pérez
IRISA / INRIA, France

Computational Grids

- Compute and storage resources:
 - Geographically distributed
 - Interconnected over a WAN
 - Not dedicated to one application
- Network bandwidth increase
- Potentially huge computer power
- Issues: security, heterogeneity
 - Compute resources
 - Network technology, performance, and topology / hierarchy
- Complex environment
Computational Grid Usage

- One of the goals: usage transparency
- In particular for application deployment
MPI Parallel Applications on Computational Grids

- MPI implementations for grids:
 - MPICH-G2, MagPIe, PACX-MPI, etc.

- Topology-aware collective operations:
 - Take network hierarchy into account
 - Optimize Broadcast, Reduce, Barrier, Gather, etc.
 - Minimize communications on slow networks

- Provide access to the underlying network topology (MPICH-G2)
 - MPI programmer can optimize his parallel algorithm
 - Dynamically create groups of communications
MPI Deployment on Grids: Complexity Accumulation (1)

- Select heterogeneous grid resources
 - OS and architecture compatibility
- Map application processes on selected compute nodes
- Select compatible compiled executables
- Upload executables, stage input files in
- Launch processes on remote computers
MPI Deployment on Grids: Complexity Accumulation (2)

- Set the configuration parameters
 - Provide network topology information to the MPI library
- MPICH-G2: environment variables
- MagPIe, PACX-MPI: description file to stage in
- All that **manually**...
 - Too complicated for grids!

No way!
MPICH-G2 Example: RSL

(& (resourceManagerContact="cluster.teragrid.org")
 (count=10)
 (environment=(GLOBUS_DUROC_SUBJOB_INDEX 0)
 (LD_LIBRARY_PATH "/usr/globus/lib")
 (GLOBUS_LAN_ID my_LAN))
 (executable="/homes/users/smith/myapp_i386")
)

(& (resourceManagerContact="node.othersite.edu")
 (count=20)
 (environment=(GLOBUS_DUROC_SUBJOB_INDEX 1)
 (GLOBUS_LAN_ID my_LAN))
 (directory="/home/ux394/")
 (executable="/home/ux394/mpi_proc_sparc")
)
Automatic Application Deployment on Grids

- Our objective: hide all that complexity
- Automatic deployment tool

Input:
- Packaged application (self-described)
- Description of grid resources

Run the application automatically
- Cluster: `mpirun -machinefile ... -np 16 my_appl`
- Grid: `grid_deploy -resources ... -application my_appl`
Automatic Deployment: Overview

Resource Description

Application Description

User-level Constraints

Deployment Planning

Deployment Plan Execution

Input of the Deployment Tool: Application Package

- MPI application
 - Packaged (ZIP file)
 - Self-described
 - Number of MPI processes
 - Various compiled implementations
- Ongoing work
 - Count, groups

Application type: MPI
Process count: 16

Executable
- Sparc Solaris
- PowerPC AIX
- i386 Linux
Input of the Deployment Tool: Grid Resource Description

- Distributed information
 - OS, architecture, CPU #
 - Network topology and performance characteristics
- A Network Topology Description Model for Grid Application Deployment, Grid2004, Pittsburgh, PA, Nov. 2004
Input of the Deployment Tool: User-Level Constraints

- Keep a certain level of control on the automatic deployment process
- Not specific to the application ("user's comfort")
 - Minimize execution time
 - Run the application close to a visualization site
- Example: no groups under 8 processes
Deployment Planning

- Heart of the automatic deployment tool
- Select grid resources
- Place application processes on computers
- Select compiled executables
 - Check OS and architecture compatibility
- Select a launch method (SSH, Globus GRAM)
- Produce a deployment plan
Deployment Plan Execution

Executable
Sparc
Solaris

Executable
i386
Linux

10-node cluster
Sparc/Solaris

10-node cluster
i386/Linux

6-node cluster
PowerPC/AIX

Internet

Less than 8 nodes
(no group under 8 processes)
Application Configuration

- Set configuration parameters
 - Provide network topology information
 - The planner has this information: placement decisions were based on it
 - MPICH-G2 (3 network hierarchy levels)
 - processes in a cluster
 - clusters in a LAN (local-area network)
 - LANs in a WAN (wide-area network)
 - MagPIe, PACX-MPI: 2 network hierarchy levels
ADAGE

- Automatic Deployment of Applications in a Grid Environment
 - http://www.irisa.fr/paris/ADAGE/
- Simple user-level constraints
- Already gained experience with distributed component-based applications
 - Deploying CORBA Components on a Computational Grid: General Principles and Experiments Using the Globus Toolkit, CD2004, Edinburgh, Scotland
MPI Application Deployment on a Grid with ADAGE

- Same simplicity as on a single cluster
 - `grid_deploy -resource my_grid`
 - `application my_appl.zip`
 - `usr_lvl my_usr_lvl_contraints`
- Resource selection among "my_grid"
- Placement and implementation selection among "my_appl.zip"
- Network topology information configuration
Conclusion

- MPI applications on computational grids
 - Complex to deploy
 - Need configuration: network topology
- Automatic deployment of MPI applications
 - Deployment planning
 - Resource selection, process placement, launch method selection, implementation selection
 - Transmit topology information to application
- Validation in ADAGE
Perspectives

- How to package MPI applications?
 - Ongoing work
- How about parallel components?
 - Distributed components made of an MPI program
- Re-deployment
 - Checkpoint/restart after failure or ETA
 - MPI-2 standard has MPI_Comm_spawn
Questions?

Thank you!